UVa294 Divisors
在一段区间[l,r]内,找出因数最多的数的个数以及其因数个数。
用唯一分解定理将一个数分解成质因数的乘积,例如 2^p1*3^p2*5^p3*7^p4*.... 从这些质因数中任选出一些数相乘,都可以组成原数的因数,总方案数为(p1+1)*(p2+1)*(p3+1)*... 注:+1是因为可以不选,全部不选的话得到数字1,也是原数的因数。
r<=1000000000,对其开根号得到31622,也就是说不会存在两个以上大于31622的质因数。素数筛算出1~3w+的质数。接下来用唯一分解定理算出区间内每个数的因数个数←暴力扫描即可。(0 ≤ L − R ≤ 10000)10000*30000次计算(实际到不了这么多),并不会炸。
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
int pri[mxn],cnt=;
bool vis[mxn];
int num[mxn];
void Pri(){//素数筛
cnt=;int i,j;
for(i=;i<mxn;i++){
if(!vis[i])pri[++cnt]=i;
for(j=;j<=cnt && i*pri[j]<mxn;j++){
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
return;
}
int dvi(int a){//计算因数个数
int res=;
int i,j;
int time=;
for(i=;i<=cnt && a>;i++){
time=;
while(a%pri[i]==){
time++;
a/=pri[i];
}
res*=(time+);
}
if(a>)res*=;
return res;
}
int l,r;
int main(){
Pri();
int i,j;
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&l,&r);
int pos=l;
int mx=dvi(l);int tmp;
for(i=l+;i<=r;i++){
tmp=dvi(i);
if(tmp>mx){
mx=tmp;
pos=i;
}
}
printf("Between %d and %d, %d has a maximum of %d divisors.\n",l,r,pos,mx);
}
return ;
}
UVa294 Divisors的更多相关文章
- UVA294 约数 Divisors 题解
Content 给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数. 数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\le ...
- codeforces 27E Number With The Given Amount Of Divisors
E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...
- HDU - The number of divisors(约数) about Humble Numbers
Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence ...
- Divisors
计算小于n的数中,约数个数最多的数,若有多个最输出最小的一个数. http://hihocoder.com/problemset/problem/1187 对于100有 60 = 2 * 2 * 3 ...
- Xenia and Divisors
Xenia and Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- hihocoder1187 Divisors
传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Given an integer n, for all integers not larger than n, f ...
- The number of divisors(约数) about Humble Numbers[HDU1492]
The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- Sum of divisors
Problem Description mmm is learning division, she's so proud of herself that she can figure out the ...
- Codeforces Beta Round #85 (Div. 1 Only) B. Petya and Divisors 暴力
B. Petya and Divisors Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/111 ...
随机推荐
- ipsec配置strongswan.conf和ipsec.conf
配置strongswan.conf vi /usr/local/etc/strongswan.conf # strongswan.conf - strongSwan configuration fil ...
- softmax_loss
softmax_loss中的ignore_label是来自于loss layer,而不是softmax_loss的参数
- [LUOGU] P2759 奇怪的函数
题目描述 使得 x^x x x 达到或超过 n 位数字的最小正整数 x 是多少? 输入输出格式 输入格式: 一个正整数 n 输出格式: 使得 x^xx x 达到 n 位数字的最小正整数 x 输入输出样 ...
- (4)zabbix监控第一台服务器
2. zabbix监控服务器 创建主机,选择模板以及录入基本信息,过一分钟左右,就可以看到cpu.内存.硬盘等等使用情况.本节以图文为主.by the way, zabbix中文翻译很烂,config ...
- perl学习之六:变量作用域
变量作用域 (一)包变量 $x = 1 这里,$x是个包变量.关于包变量,有2件重要的事情要了解: 1)假如没有其他申明,变量就是包变量:2)包变量总是全局的. 全局意味着包变量在每个程序里总可访问到 ...
- LeetCode695--岛屿的最大面积
''' 岛屿的最大面积 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合.你可以假设二维矩阵的四个边缘都被水包围着 ...
- final,buaa_oo conclusion
UML系列作业设计架构 第13次作业 本单元的第一次作业中,涉及到了类图的解析.在着手做这单元作业的时候,需要将每一种 UmlElement 再封装,并在解析时,用 helper 单例来进行查询处理( ...
- 2,格式化输出and编码基础
格式化输出: input格式化输出: name = input('请输入姓名:') name = input('请输入姓名:') Age = int(input('请输入年龄:')) job = in ...
- OpennSSL之基本了解
HTTPS是一种协议,等于HTTP+TLS(由于历史原因,SSL3.0之后就被TLS1.0替代了).openssl是一套开源工具集,主要有两个特性: 实现了ssl2,ssl3,TLSv1,TLSv1. ...
- log4j动态日志级别调整
1. 针对root logger的设置 log4j.rootLogger=INFO, CONSOLELogger.getRootLogger().setLevel(org.apache.log4j.L ...