题目描述

给出一个数字N

输入

第一行为一个正整数T,表示数据组数。
接下来T行为询问,每行包含一个正整数N。
T<=5000,N<=10^7

输出

按读入顺序输出答案。

样例输入

1
10

样例输出

136


题解

欧拉函数

其中用到了$\sum\limits_{i=1}^k\sum\limits_{j=1}^k[\gcd(i,j)=1]=2\sum\limits_{i=1}^k\varphi(i)-1$

这个推导很简单:由欧拉函数的定义,$\sum\limits_{i=1}^k\sum\limits_{j=1}^i[\gcd(i,j)=1]=\sum\limits_{i=1}^k\varphi(i)$,此时$i\ge j$,而当$i\le j$时情况相同。最后减掉重复计算的(1,1)即为左边。

然后剩下的就好说了,预处理欧拉函数$\varphi$和其前缀和$sum$,分块枚举$\lfloor\frac nd\rfloor$的取值并计算即可。

#include <cstdio>
#include <algorithm>
using namespace std;
#define N 10000010
typedef long long ll;
const int m = 10000000;
int prime[N] , tot , phi[N];
ll sum[N];
bool np[N];
int main()
{
int i , j , t , n , last;
ll ans;
sum[1] = phi[1] = 1;
for(i = 2 ; i <= m ; i ++ )
{
if(!np[i]) phi[i] = i - 1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
sum[i] = sum[i - 1] + phi[i];
}
scanf("%d" , &t);
while(t -- )
{
scanf("%d" , &n) , ans = 0;
for(i = 1 ; i <= n ; i = last + 1) last = n / (n / i) , ans += (sum[last] - sum[i - 1]) * sum[n / i];
printf("%lld\n" , 2 * ans - sum[n]);
}
return 0;
}

【bzoj4804】欧拉心算 欧拉函数的更多相关文章

  1. bzoj 4804 欧拉心算 欧拉函数,莫比乌斯

    欧拉心算 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 408  Solved: 244[Submit][Status][Discuss] Descr ...

  2. BZOJ 4804: 欧拉心算 欧拉函数

    Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10^7 题解: 求 $\sum_ ...

  3. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  4. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  5. BZOJ_4804_欧拉心算_欧拉函数

    BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...

  6. 【bzoj4804】欧拉心算 解题报告

    [bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...

  7. 带你实现开发者头条APP(五)--RecyclerView下拉刷新上拉加载

    title: 带你实现开发者头条APP(五)--RecyclerView下拉刷新上拉加载 tags: -RecyclerView,下拉刷新,上拉加载更多 grammar_cjkRuby: true - ...

  8. iscroll.js 下拉刷新和上拉加载

    html代码如下 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...

  9. IOS 开发下拉刷新和上拉加载更多

    IOS 开发下拉刷新和上拉加载更多 简介 1.常用的下拉刷新的实现方式 (1)UIRefreshControl (2)EGOTTableViewrefresh (3)AH3DPullRefresh ( ...

随机推荐

  1. 《Head First HTML与CSS》项目实践中学到的东西

    1.组织的重要性. 首先是要建立两个根文件夹,一个存上线页面的资源,一个存测试页面的资源.所有改动内容都在测试页面的文件夹中进行,在这个文件夹中进行测试.W3C语法检测后(HTML检测网站:https ...

  2. uvm_reg_defines——寄存器模型(四)

    文件: src/marcos/uvm_reg_defines 类: 无 该文件是寄存器模型src/reg/* 文件对于的宏文件,主要定义了寄存器地址位宽,寄存器数据位宽,字节的大小.计算机从最初的8, ...

  3. 清理ThreadLocal

    在我很多的课程里(master.concurrency.xj-conc-j8),我经常提起ThreadLocal.它经常受到我严厉的指责要尽可能的避免使用.ThreadLocal是为了那些使用完就销毁 ...

  4. HTML iframe框架

    iframe 作用: 就是在一个网页插入一个小窗口   窗口里面也是一个网页 <a href="http://www.baidu.com" target="da1& ...

  5. (三)maven之一个基本的pom.xml

    一个基本项目的pom.xml文件,通常会有以下三部分: 一.项目坐标,信息描述等. <modelVersion>4.0.0</modelVersion> <groupId ...

  6. python 判断路径是否存在

    import os os.path.exists(文件绝对路径)

  7. [Android 测试] 压力稳定性测试之: Monkey 详解分析脚本(转载)

    一.什么是稳定性测试? 通过随机点击屏幕一段时间,看看app会不会奔溃,能不能维持正常运行. 二. Money是什么? Monkey测试是Android平台自动化测试的一种手段,通过Monkey程序模 ...

  8. STATIC 和 CLASS

    STATIC 和 CLASS 由 王巍 (@ONEVCAT) 发布于 2015/01/28 Swift 中表示 “类型范围作用域” 这一概念有两个不同的关键字,它们分别是 static 和 class ...

  9. 洛谷 P2872 道路建设

    https://www.luogu.org/problemnew/show/P2872 算是比较裸的并查集了,已经有路的两个点之间建一条代价为0的边,路径长度计算两点之间的距离,做并查集就好咯. #i ...

  10. 使用Spring Cloud需要了解一些概念

    Spring Cloud是一个基于Spring Boot实现的微服务架构开发工具,它为基于JVM的微服务开发中的配置管理.服务发现.断路器.智能路由.微代理.控制总线.全局锁.决策竞选.分布式会话和集 ...