Area in Triangle

博客原文地址:http://blog.csdn.net/xuechelingxiao/article/details/40707691

题目大意:

给你一个三角形的三边边长,给你一跟绳子的长度,将绳子放在三角形里围起来的面积最大是多少。

解题思路:

当然能够想到当绳子的长度十分长的时候,绳子能围城的最大面积就是三角形的面积。

当然还能够想到的是当绳子的长度比較短,小于三角形的内接圆的长度时,绳子能围城的面积就是绳子能围成的圆的面积。

那么剩下要计算的就是当绳子长度小于三角形周长而且大于三角形内接圆的时候。

这样的情况下,显然会是如图所看到的的情况。

那么这样的情况下的面积怎么计算呢?

如图:

两个三角形是相似的,所以红色绳子所围成部分的面积就是大三角形的面积减去小三角形的的面积再加上小三角形内切圆的面积,也就是代码中

ans = S-S*t*t+Pi*rr*rr; 的意义。至于小三角形内切圆的半径。则是用小三角形与大三角形相似算出来的比例求得的。

我感觉说的挺具体的,具体的看代码吧。

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#include <iostream>
#include <limits.h>
#include <algorithm>
#define LL long long
//#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define max3(a, b, c) (a>b?max(a, c):max(b, c))
#define min3(a, b, c) (a<b?min(a, c):min(b, c))
#define max4(a, b, c, d) max(max(a, b), max(c, d))
#define min4(a, b, c, d) min(min(a, b), min(c, d))
#define Read() freopen("data.in", "r", stdin);
#define Write() freopen("data.out", "w", stdout); const double Pi = acos(-1.0);;
const double Ee = 2.718281828459045235360;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
const double eps = 1e-8;
const int MOD = 1000000009; const int dx4[] = {-1, 0, 1, 0};
const int dy4[] = { 0, 1, 0, -1};
const int dx8[] = {-1, 0, 1, 0, -1, -1, 1, 1};
const int dy8[] = {0 , 1, 0, -1, -1, 1, -1, 1};
const int dxhorse[] = {-2, -2, -1, -1, 1, 1, 2, 2};
const int dyhorse[] = {1 , -1, 2, -2, 2, -2, 1, -1}; using namespace std; struct Point {
double x, y;
} P[20010], m; int dcmp(double x) {
return x < -eps ? -1 : x > eps;
} int main()
{
double a, b, c, d;
int icase = 1;
while(~scanf("%lf%lf%lf%lf", &a, &b, &c, &d)) {
if(dcmp(a)==0 && dcmp(b)==0 && dcmp(c)==0 && dcmp(d)==0) {
break;
}
double L = a+b+c;
double cosA = (b*b+c*c-a*a)/(2*b*c);
double S = 0.5*b*c*(sqrt(1-cosA*cosA));
double r = S*2/L;
double ans;
if(d > L) {
ans = S;
}
else if(2*Pi*r >= d) {
ans = d*d/(4*Pi);
}
else {
double t = (L-d)/(L-2*Pi*r);
double rr = r*t;
ans = S-S*t*t+Pi*rr*rr;
}
printf("Case %d: %.2lf\n", icase++, ans);
} return 0;
} /*test case*/
/* */

POJ 1927 Area in Triangle(计算几何)的更多相关文章

  1. POJ 1927 Area in Triangle

    Area in Triangle Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1674   Accepted: 821 D ...

  2. POJ 1927 Area in Triangle 题解

    link Description 给出三角形三边长,给出绳长,问绳在三角形内能围成的最大面积.保证绳长 \(\le\) 三角形周长. Solution 首先我们得知道,三角形的内切圆半径就是三角形面积 ...

  3. 2018.07.04 POJ 1654 Area(简单计算几何)

    Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...

  4. hdu 1451 Area in Triangle(计算几何 三角形)

    Given a triangle field and a rope of a certain length (Figure-1), you are required to use the rope t ...

  5. poj 1654 Area 多边形面积

    /* poj 1654 Area 多边形面积 题目意思很简单,但是1000000的point开不了 */ #include<stdio.h> #include<math.h> ...

  6. poj 1265 Area 面积+多边形内点数

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5861   Accepted: 2612 Description ...

  7. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  8. 2018.07.04 POJ 1265 Area(计算几何)

    Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...

  9. POJ 1654 Area 计算几何

    #include<stdio.h> #include<string.h> #include<iostream> #include<math.h> usi ...

随机推荐

  1. 实现验证的vsftpd虚拟用户

    实现基于文件验证的vsftpd虚拟用户--(一台) 一.创建用户数据库文件 vim /etc/vsftpd/vuser cd /etc/vsftpd/ db_load -T -t hash -f vu ...

  2. Python之 七级字典查询

    # -*- coding:utf- -*- # 作业要求: # 打印直辖市,省,市,县,区,街道五级菜单: # 可以一层一层地进入到所有层 # 可以退出到上一层 # 可随时退出程序 mapChina ...

  3. Specified VM install not found: type Standard VM, name JDK1.8

    真正的问题解决方法在这里:在项目中,右键点击ant文件,选择Run As -- External Tools Configuration,在这个页面的顶端就会看到有红叉叉的报错,报错信息就是Speci ...

  4. 从零开始写STL-二叉搜索树

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  5. HDU 5695 Gym Class

    拓扑排序. #include<cstdio> #include <iostream> #include<cstring> #include<cmath> ...

  6. Fractal---POJ2083(dfs)

    http://poj.org/problem?id=2083 一道我认为有点恶心的dfs       刚开始没有初始化  用G++交  一直TLE  后来用了C++竟然是wa   那这肯定是我的问题了 ...

  7. Wannafly挑战赛1

    地址:https://www.nowcoder.com/acm/contest/15#question A(树形dp) 分析 dp[i][0],dp[i][1]分别表示以i为根的子树中,有多少个点到i ...

  8. Spring Boot中实现logback多环境日志配置

    在Spring Boot中,可以在logback.xml中的springProfile标签中定义多个环境logback.xml: <springProfile name="produc ...

  9. SpringMVC Ueditor1.4.3 未找到上传数据

    ueditor自事的fileupload组件与spring的有冲突.将那个类BinaryUploader 重写就可以了             return storageState;         ...

  10. oracle dtrace for linux

    https://docs.oracle.com/cd/E37670_01/E37355/html/ol_config_dtrace.html#