Ombrophobic Bovines
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 19066   Accepted: 4138

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

题意:
有n块地,每块地初始有a头牛和一个能容纳b头牛的牛棚,有m条带权边,表示走过这条边需要的时间

,问最少需要多少时间能让所有的牛在进入棚子(n头牛同时行动)。
代码:
//先floyd求出每两个点之间的最短距离,二分距离,如果两点之间的距离小于等于此
//二分值mid,两点之间建容量为inf的边,还要拆点,源点到i建容量为i点牛数量的
//边,i+n到汇点建容量为i点牛棚能容纳牛数量的边,看最大流是否是牛的总数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
const int maxn=;
const int inf=0x7fffffff;
const ll llinf=(1LL<<);
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void Init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
int N,M,a,b,c,x[maxn],y[maxn];
ll mp[maxn][maxn];
void Floyd(ll &r){
for(int k=;k<=N;k++)
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(mp[i][k]!=llinf&&mp[k][j]!=llinf)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
for(int i=;i<=N;i++)
for(int j=;j<=N;j++){
if(mp[i][j]!=llinf) r=max(r,mp[i][j]);
}
}
int Solve(ll mid){
dc.Init(*N+);
for(int i=;i<=N;i++){
dc.Addedge(,i,x[i]);
dc.Addedge(i+N,*N+,y[i]);
for(int j=;j<=N;j++)
if(mp[i][j]<=mid)
dc.Addedge(i,j+N,inf);
}
return dc.Maxflow(,*N+);
}
int main()
{
while(scanf("%d%d",&N,&M)==){
int sum1=,sum2=;
for(int i=;i<=N;i++){
scanf("%d%d",&x[i],&y[i]);
sum1+=x[i];sum2+=y[i];
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
mp[i][j]=(i==j?:llinf);
while(M--){
scanf("%d%d%d",&a,&b,&c);
mp[a][b]=mp[b][a]=min(mp[a][b],1LL*c);
}
ll l=,r=,mid,ans;
Floyd(r);
if(Solve(r)!=sum1){
printf("-1\n");
continue;
}
while(l<=r){
mid=(l+r)>>;
if(Solve(mid)==sum1){
ans=mid;r=mid-;
}
else l=mid+;
}
printf("%I64d\n",ans);
}
return ;
}
 

POJ 2391 二分+最大流的更多相关文章

  1. poj 2391 (Floyd+最大流+二分)

    题意:有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 两个避雨点间可以相互到 ...

  2. poj 3228(二分+最大流)

    题目链接:http://poj.org/problem?id=3228 思路:增设一个超级源点和一个超级汇点,源点与每一个gold相连,容量为gold数量,汇点与仓库相连,容量为仓库的容量,然后就是二 ...

  3. poj 2455 二分+最大流

    这个因为点少用邻接矩阵做的. 题意:求由1到n的t条不重复路径中最大边权值的最小值. 思路:先对边权进行排序,然后二分边权值,建图求从1到n的最大流,当最大流为t时便求出答案. 代码: #includ ...

  4. POJ 2112 二分+最大流

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 17297   Accepted: 6203 ...

  5. POJ 3228 二分最大流

    题意:       给你N个位置,每个位置都有金矿数量和仓库数量,然后位置和位置之间的距离给了出来,最后问你吧所有的金矿都放到库里面走的路径 最长的最短 是多少? 思路:      比较简单的一个题, ...

  6. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  7. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  8. uvalive 3231 Fair Share 公平分配问题 二分+最大流 右边最多流量的结点流量尽量少。

    /** 题目: uvalive 3231 Fair Share 公平分配问题 链接:https://vjudge.net/problem/UVALive-3231 题意:有m个任务,n个处理器,每个任 ...

  9. POJ - 2018 二分+单调子段和

    依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...

随机推荐

  1. python图片大小处理;

    循环一个目录将下面的所有png或者jpg文件全部缩小一定比例:     from PIL import Image import os,re work_dir = 'C:\\Users\\Admini ...

  2. 【QT】常用类

    官方文档 doc QWidget QWidget类是所有用户界面对象的基类. 窗口部件是用户界面的一个基本单元:它从窗口系统接收鼠标.键盘和其它事件,并且在屏幕上绘制自己. 每一个窗口部件都是矩形的, ...

  3. 机器学习-线性回归LinearRegression

    概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归.说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务.那什么是回归任务和分类任务呢?简单的来说 ...

  4. Centos配置深度学习开发环境

    目录 1. 安装显卡驱动 2. 安装CUDA\CUDNN 3. 安装TensorFlow-gpu 测试 1. 安装显卡驱动 检测显卡驱动及型号 $ sudo rpm --import https:// ...

  5. File Searching

    Description Have you ever used file searching tools provided by an operating system? For example, in ...

  6. c# 读取xml文件 编写form

    主要思想:xml保存控件的数据,c#读取出来并加以显示. 难点:1.控件有父容器和子控件的关系:2.控件事件的添加. 1.控件有父容器和子控件的关系: 可以用绝对坐标在xml文件中先读取子控件再读取父 ...

  7. Java内存区域划分和GC机制

    Java 内存区域和GC机制   目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Ga ...

  8. LintCode-69.二叉树的层次遍历

    二叉树的层次遍历 给出一棵二叉树,返回其节点值的层次遍历(逐层从左往右访问) 样例 给一棵二叉树 {3,9,20,#,#,15,7} : 返回他的分层遍历结果: [     [3],     [9,2 ...

  9. XML 反序列化成对象,绑定到CheckBoxList控件

    1.前台 <div class="control-group"> <label class="control-label"> 导航名称: ...

  10. 关闭win7/Server 2008非正常关机启动自动修复功能

    命令提示符下输入 bcdedit /set {default} bootstatuspolicy ignoreallfailures bcdedit /set {current} recoveryen ...