Ombrophobic Bovines
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 19066   Accepted: 4138

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

题意:
有n块地,每块地初始有a头牛和一个能容纳b头牛的牛棚,有m条带权边,表示走过这条边需要的时间

,问最少需要多少时间能让所有的牛在进入棚子(n头牛同时行动)。
代码:
//先floyd求出每两个点之间的最短距离,二分距离,如果两点之间的距离小于等于此
//二分值mid,两点之间建容量为inf的边,还要拆点,源点到i建容量为i点牛数量的
//边,i+n到汇点建容量为i点牛棚能容纳牛数量的边,看最大流是否是牛的总数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
const int maxn=;
const int inf=0x7fffffff;
const ll llinf=(1LL<<);
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void Init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
int N,M,a,b,c,x[maxn],y[maxn];
ll mp[maxn][maxn];
void Floyd(ll &r){
for(int k=;k<=N;k++)
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(mp[i][k]!=llinf&&mp[k][j]!=llinf)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
for(int i=;i<=N;i++)
for(int j=;j<=N;j++){
if(mp[i][j]!=llinf) r=max(r,mp[i][j]);
}
}
int Solve(ll mid){
dc.Init(*N+);
for(int i=;i<=N;i++){
dc.Addedge(,i,x[i]);
dc.Addedge(i+N,*N+,y[i]);
for(int j=;j<=N;j++)
if(mp[i][j]<=mid)
dc.Addedge(i,j+N,inf);
}
return dc.Maxflow(,*N+);
}
int main()
{
while(scanf("%d%d",&N,&M)==){
int sum1=,sum2=;
for(int i=;i<=N;i++){
scanf("%d%d",&x[i],&y[i]);
sum1+=x[i];sum2+=y[i];
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
mp[i][j]=(i==j?:llinf);
while(M--){
scanf("%d%d%d",&a,&b,&c);
mp[a][b]=mp[b][a]=min(mp[a][b],1LL*c);
}
ll l=,r=,mid,ans;
Floyd(r);
if(Solve(r)!=sum1){
printf("-1\n");
continue;
}
while(l<=r){
mid=(l+r)>>;
if(Solve(mid)==sum1){
ans=mid;r=mid-;
}
else l=mid+;
}
printf("%I64d\n",ans);
}
return ;
}
 

POJ 2391 二分+最大流的更多相关文章

  1. poj 2391 (Floyd+最大流+二分)

    题意:有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 两个避雨点间可以相互到 ...

  2. poj 3228(二分+最大流)

    题目链接:http://poj.org/problem?id=3228 思路:增设一个超级源点和一个超级汇点,源点与每一个gold相连,容量为gold数量,汇点与仓库相连,容量为仓库的容量,然后就是二 ...

  3. poj 2455 二分+最大流

    这个因为点少用邻接矩阵做的. 题意:求由1到n的t条不重复路径中最大边权值的最小值. 思路:先对边权进行排序,然后二分边权值,建图求从1到n的最大流,当最大流为t时便求出答案. 代码: #includ ...

  4. POJ 2112 二分+最大流

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 17297   Accepted: 6203 ...

  5. POJ 3228 二分最大流

    题意:       给你N个位置,每个位置都有金矿数量和仓库数量,然后位置和位置之间的距离给了出来,最后问你吧所有的金矿都放到库里面走的路径 最长的最短 是多少? 思路:      比较简单的一个题, ...

  6. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  7. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  8. uvalive 3231 Fair Share 公平分配问题 二分+最大流 右边最多流量的结点流量尽量少。

    /** 题目: uvalive 3231 Fair Share 公平分配问题 链接:https://vjudge.net/problem/UVALive-3231 题意:有m个任务,n个处理器,每个任 ...

  9. POJ - 2018 二分+单调子段和

    依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...

随机推荐

  1. 【转】UTF8字符串转换为汉字 c#,转自游戏开发主席

    using System; /// <summary> /// UTF8字符串转换为汉字用的类 /// 转换如"\\u8d35"之类的字符串为对应的汉字 /// < ...

  2. CSS 之 选择器

    CSS的常见选择器 一.简单选择器 Simple Selectors 选择器 含义 * 通用元素选择器,匹配任何元素 E 标签选择器,匹配所有使用E标签的元素 .info class选择器,匹配所有c ...

  3. LeetCode 102 ——二叉树的层次遍历

    1. 题目 2. 解答 定义一个存放树中数据的向量 data,一个存放树的每一层数据的向量 level_data 和一个存放每一层节点的队列 node_queue. 如果根节点非空,根节点进队,然后循 ...

  4. 各类4G手机进入工参模式查看手机信息

    随着移动4G正式商用,LTE网络建设日益完善,LTE用户日趋增多,通过进入其工程模式读取服务小区电平RSRP.物理小区标识PCI和频点号等基本信息的方式来判断测试点信号质量的优劣.由于市场上商用终端品 ...

  5. 一:yarn 介绍

        yarn的了出现主要是为了拆分jobtracker的两个核心功能:资源管理和任务监控,分别对应resouceManager(RM)和applicationManager(AM).yarn中的任 ...

  6. [LeetCode] 53. Maximum Subarray 解题思路

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. redis切换数据库的方法【jedis】

    package com.test; import redis.clients.jedis.Jedis; public class readredis { public static void main ...

  8. Node js MongoDB简单操作

    //win7环境下node要先安装MongoDB的相关组件(非安装MongoDB数据库),在cmd命令行进入node项目目录后执行以下语句 //npm install mongodb //创建连接 v ...

  9. 文件“bin\Debug\WindowsFormsApplication2.exe”正由另一进程使用,因此该进程无法访问该文件。

    http://zhidao.baidu.com/question/221394579.html?qbl=relate_question_2&word=%BE%AF%B8%E6%094%09%C ...

  10. deep learning3

    9.3.Restricted Boltzmann Machine (RBM)受限玻尔兹曼基 假设有一个二部图,每一层的节点之间没有链接,一层是可视层,即输入数据层(v),一层是隐藏层(h),如果假设所 ...