1.1 YARN 基本架构

YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。

其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

1.2 YARN基本组成结构

YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成结构进行介绍。

图2-9描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

1.ResourceManager(RM)

RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。

(1)调度器

调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。

需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。

(2) 应用程序管理器

应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

2. ApplicationMaster(AM)

用户提交的每个应用程序均包含1个AM,主要功能包括:

与RM调度器协商以获取资源(用Container表示);

将得到的任务进一步分配给内部的任务;

与NM通信以启动/停止任务;

监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster,我们将在第8章对其进行介绍。此外,一些其他的计算框架对应的AM正在开发中,比如Open MPI、Spark等。

3. NodeManager(NM)

NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求

4. Container

Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。

需要注意的是,Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。截至本书完成时,YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。

1.3  YARN工作流程

当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:

第一个阶段是启动ApplicationMaster;

第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,并监控它的整个运行过程,直到运行完成。

如图2-11所示,YARN的工作流程分为以下几个步骤:

步骤1 用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。

步骤2 ResourceManager为该应用程序分配第一个Container,并与对应的Node-Manager通信,要求它在这个Container中启动应用程序的ApplicationMaster。

步骤3 ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7。

步骤4 ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。

步骤5 一旦ApplicationMaster申请到资源后,便与对应的NodeManager通信,要求它启动任务。

步骤6 NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。

步骤7 各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

在应用程序运行过程中,用户可随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。

步骤8 应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

1.4 多角度理解YARN

可将YARN看做一个云操作系统,它负责为应用程序启动ApplicationMaster(相当于主线程),然后再由ApplicationMaster负责数据切分、任务分配、启动和监控等工作,而由ApplicationMaster启动的各个Task(相当于子线程)仅负责自己的计算任务。当所有任务计算完成后,ApplicationMaster认为应用程序运行完成,然后退出。

转自网络。

Hadoop体系结构之 Yarn的更多相关文章

  1. Hadoop 2.2 YARN分布式集群搭建配置流程

    搭建环境准备:JDK1.6,SSH免密码通信 系统:CentOS 6.3 集群配置:NameNode和ResourceManager在一台服务器上,三个数据节点 搭建用户:YARN Hadoop2.2 ...

  2. Hadoop学习之YARN框架

    转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/,非常感谢分享! 对于业界的大数据存储及分布式处理系统来说,H ...

  3. Hadoop 2.x(YARN)安装配置LZO

    今天尝试在Hadoop 2.x(YARN)上安装和配置LZO,遇到了很多坑,网上的资料都是基于Hadoop 1.x的,基本没有对于Hadoop 2.x上应用LZO,我在这边记录整个安装配置过程 1. ...

  4. Hadoop体系结构杂谈

    hadoop体系结构杂谈 今天跟一个朋友在讨论hadoop体系架构,从当下流行的Hadoop+HDFS+MapReduce+Hbase+Pig+Hive+Spark+Storm开始一直讲到HDFS的底 ...

  5. Apache Hadoop下一代MapReduce框架(YARN)简介 (Apache Hadoop NextGen MapReduce (YARN))

    英文看着头大,先试着翻译一下. E文原文:http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-yarn/hadoop-yarn-site/YARN ...

  6. 一图看懂hadoop Spark On Yarn工作原理

    hadoop Spark On Yarn工作原理

  7. Hadoop学习笔记(一)——Hadoop体系结构

    HDFS和MapReduce是Hadoop的两大核心. 整个Hadoop体系结构主要是通过HDFS来实现分布式存储的底层支持的,而且通过MapReduce来实现分布式并行任务处理的程序支持. 一.HD ...

  8. Apache Hadoop集群离线安装部署(一)——Hadoop(HDFS、YARN、MR)安装

    虽然我已经装了个Cloudera的CDH集群(教程详见:http://www.cnblogs.com/pojishou/p/6267616.html),但实在太吃内存了,而且给定的组件版本是不可选的, ...

  9. Hadoop官方文档翻译—— YARN ResourceManager High Availability 2.7.3

    ResourceManager High Availability (RM高可用) Introduction(简介) Architecture(架构) RM Failover(RM 故障切换) Rec ...

随机推荐

  1. Linux下使用USB模拟ACM串口设备【转】

    本文转载自:https://www.cnblogs.com/pied/p/4549614.html 这个想法之前就在脑袋里有过,最近公司产品要用到,所以多做了些了解. 1. USB 简介 USB 是 ...

  2. maven说明

    1.maven 仓库地址 http://mvnrepository.com/ 2.maven jar包搜索地址 http://search.maven.org/ 3. 点开上面的 版本链接,就可以看到 ...

  3. Hibernate关联关系映射之一对一关联关系

    人和身份证之间就是一个典型的一对一关联关系.实现一对一关联关系映射的方式有两种一种是基于外键,一种是基于主键,下面我们先看基于外键的关联方式 首先看他们的实体类 Person类 ? 1 2 3 4 5 ...

  4. 使用display:table使两栏布局高度相等

    两栏布局大家应该经常用了,但是遇到坑爹的要两栏的高度对齐的话要怎么办呢? <!DOCTYPE html> <html> <head> <meta charse ...

  5. html5 如何打包成apk,将H5封装成android应用APK文件的几种方法

    直接使用编程软件提供的方法: 1.需要下载安装MyEclipse2014,Android SDK,eclipse(需配置Android开发环境) Java和Android环境安装与配置. 2.打开My ...

  6. c++ std::find函数

    template <class InputIterator, class T>InputIterator find (InputIterator first,InputIterator l ...

  7. EF6 Code First 系列 (四):SQLite的DropCreateDatabaseIfModelChanges和乐观并发控制

    没什么好说的,能支持DropCreateDatabaseIfModelChanges和RowVersion的Sqlite谁都想要.EntityFramework7正在添加对Sqlite的支持,虽然EF ...

  8. Spring之RMI 远程方法调用 (Remote Method Invocation)

    RMI 指的是远程方法调用 (Remote Method Invocation) 1. RMI的原理: RMI系统结构,在客户端和服务器端都有几层结构. 方法调用从客户对象经占位程序(Stub).远程 ...

  9. Spring获取bean的几种方式

    工作中需要对一个原本加载属性文件的工具类修改成对数据库的操作当然,ado层已经写好,但是需要从Spring中获取bean,然而,工具类并没有交给Spring来管理,所以需要通过方法获取所需要的bean ...

  10. Android DDMS ADB启动失败错误解决!

    ADB server didn't ACK && make sure the plugin is properly configured! adb启动失败一般是端口被占用! 解决方法和 ...