洛谷

这题是旁边同学介绍的,听他说记忆化搜索可以过。。。

不过我还是老老实实的想\(dp\)吧~

先看看数据范围,\(n\leq10^{18}\)相当于\(n \leq fib[86]\)。

以前打\(cf\)的时候做过一个题目,好像证明过任何数都可以用斐波那契数组成。

不过现在忘记证了。。。

但是刚好这个可以派上用场,先假设\(p[i]\)代表组成\(n\)的第\(i\)个斐波那契数的位置。

另外,还有一个性质我们也需要分析出来。

因为\(fib[i]=fib[i-1]+fib[i-2]\),所以每个斐波那契数都可以有两种选择。

选择分裂,或不分裂。

那么我们令\(f[i][0/1]\)代表枚举到第\(i\)个组成\(n\)的斐波那契数此时的方案数。

0是不分裂,1是分裂。

所以状态这么转移:

\[f[i][0]=f[i-1][0]+f[i-1][1]
\]

\[f[i][1]=(p[i]-p[i-1]-1)/2*f[i-1][0]+(p[i]-p[i-1])/2*f[i-1][1]
\]

为什么呢?

\(f[i][0]\)很显然,不用说。

对于\(f[i][1]\),第\(i\)位分裂,显然它前面有\(p[i]-p[i-1]>>1\)个方案是\(f[i-1][1]\)(分裂)的。

而前面的\(f[i-1][0]\)如果是不分裂,那么方案\(-1\)。

那么代码(复杂度\(O(86)\)):

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
ll a[86]={0,1,2},f[86][2]={};
ll n,p[86]={},cnt;
cin>>n;
for (int i=3;i<=85;++i)
a[i]=a[i-1]+a[i-2];
for (int i=85;i;--i)
if (n>=a[i])
n-=a[i],p[++cnt]=i;
reverse(p+1,p+1+cnt);
f[1][0]=1;f[1][1]=(p[1]-1)/2;
for (int i=2;i<=cnt;++i) {
f[i][0]=f[i-1][1]+f[i-1][0];
f[i][1]=(p[i]-p[i-1]-1)/2*f[i-1][0]+(p[i]-p[i-1])/2*f[i-1][1];
}
cout<<f[cnt][1]+f[cnt][0];
return 0;
}

洛谷 [BJOI2012]最多的方案的更多相关文章

  1. 洛谷P2756飞行员配对方案问题 P2055假期的宿舍【二分图匹配】题解+代码

    洛谷 P2756飞行员配对方案问题 P2055假期的宿舍[二分图匹配] 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架 ...

  2. [CF126D]Fibonacci Sums/[BJOI2012]最多的方案

    [CF126D]Fibonacci Sums/[BJOI2012]最多的方案 题目大意: 将\(n(n\le10^9)\)表示成若干个不同斐波那契数之和的形式,求方案数. 思路: 如果不考虑\(0\) ...

  3. BJOI2012 最多的方案

    BJOI2012 最多的方案 Description ​ 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数 ...

  4. BZOJ1079或洛谷2476 [SCOI2008]着色方案

    一道记忆化搜索 BZOJ原题链接 洛谷原题链接 发现对于能涂木块数量一样的颜色在本质上是一样的,所以可以直接压在一个状态,而这题的数据很小,直接暴力开\(6\)维. 定义\(f[a][b][c][d] ...

  5. 【题解】洛谷P1065 [NOIP2006TG] 作业调度方案(模拟+阅读理解)

    次元传送门:洛谷P1065 思路 简单讲一下用到的数组含义 work 第i个工件已经做了几道工序 num 第i个工序的安排顺序 finnish 第i个工件每道工序的结束时间 need 第i个工件第j道 ...

  6. 洛谷P4133 [BJOI2012]最多的方案(记忆化搜索)

    题意 题目链接 求出把$n$分解为斐波那契数的方案数,方案两两不同的定义是分解出来的数不完全相同 Sol 这种题,直接爆搜啊... 打表后不难发现$<=1e18$的fib数只有88个 最先想到的 ...

  7. [BJOI2012]最多的方案(记忆化搜索)

    第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...

  8. 洛谷——P2756 飞行员配对方案问题

    P2756 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其 ...

  9. 洛谷P2756 飞行员配对方案问题(二分图匹配)

    P2756 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其 ...

随机推荐

  1. python学习之socket模块

    socket.socket(family=AF_INET,type=SOCK_STREAM,proto=,fileno=None) 使用给定的地址族,套接字类型和协议号创建一个新的套接字.family ...

  2. JS高程3:DOM-节点层次

    DOM是一个API,通过该API可以操作HTML文档或者XML文档. DOM将HTML或者XML文档描绘成一个多层节点结构. 文档节点是HTML或者XML文档的根节点,同时也是其他节点的根节点,因为每 ...

  3. 转载C#操作数据库小结

    1.常用的T-Sql语句      查询:SELECT * FROM tb_test WHERE ID='1' AND name='xia'                SELECT * FROM ...

  4. SPI—读写串行 FLASH

    SPI协议简介SPI 协议是由摩托罗拉公司提出的通讯协议(Serial Peripheral Interface),即串行外围设备接口,是一种高速全双工的通信总线.它被广泛地使用在 ADC. LCD ...

  5. Oracle面试题目及解答

    这里的回答并不是十分全面,这些问题可以通过多个角度来进行解释,也许你不必在面试过程中给出完全详尽的答案,只需要通过你的解答使面试考官了解你对ORACLE概念的熟悉程度. 1. 解释冷备份和热备份的不同 ...

  6. oracle+SQL优化实例

    1.     减少I/O操作: SELECT COUNT(CASE WHEN empno>20 THEN 1 END) c1,COUNT(CASE WHEN empno<20 THEN 1 ...

  7. Attention Mechanism

    首先介绍Attention机制: 转自:http://blog.csdn.net/malefactor/article/details/50550211 上面讲的是Soft Attention Mod ...

  8. JavaWeb——监听器

    监听器简介 监听器是指专门用于在其他对象身上发生的事件或者状态改变进行监听和相应处理的对象,当被监听的对象发生变化时立即采取相应的行动. 例如我们要实现统计一个网站的在线人数,就可以在Web应用应用程 ...

  9. 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...

  10. python urllib2导出elasticsearch数据时 返回 "urllib2.HTTPError: HTTP Error 500: Internal Server Error"

    0.业务场景 将ES中某个index的某个字段的所有数据,导出到文件中 1.ES数据导出方法简述 ES数据导出方法,我主要找到了以下几个方面,欢迎大家补充: ES官方API:snapshot and ...