BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4589
【题目大意】
有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种
【题解】
后手必胜,则sg为0,那么就是求n个m以内的数xor为0的情况有几种,
首先筛出素数,保存素数的个数数组,利用FWT计算c[i^j]=a[i]*b[j],
计算n次的结果逆向变化回来就是最终的sg个数数组,
在计算n次c[i]=a[i]*b[i]的过程中,等价于计算c[i]=a[i]^n,
这里我们可以用快速幂优化一个log。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=100000;
const LL mod=1e9+7;
LL a[N],u;
int p[N],n,m;
void FWT(LL*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
LL x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
}
}
void UFWT(LL*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
LL x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod*u%mod,a[i+j+d]=(x-y+mod)%mod*u%mod;
}
}
LL pow(LL a,LL b,LL p){LL t=1;for(a%=p;b;b>>=1LL,a=a*a%p)if(b&1LL)t=t*a%p;return t;}
int main(){
for(int i=2;i<=50000;i++)p[i]=1;
for(int i=2;i<=50000;i++)if(p[i]){
for(int j=2;i*j<=50000;j++)p[i*j]=0;
}u=pow(2,mod-2,mod);
while(~scanf("%d%d",&n,&m)){
int len=1;while(len<=m)len<<=1;
for(int i=0;i<len;i++)a[i]=p[i]&(i<=m);
FWT(a,len);
for(int i=0;i<len;i++)a[i]=pow(a[i],n,mod);
UFWT(a,len);
printf("%lld\n",a[0]);
}return 0;
}
BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)的更多相关文章
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...
- BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)
BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...
随机推荐
- 15、简述MySQL的执行计划?
具体的Mysql的执行计划,请参考下面的链接: MySQL_执行计划详细说明
- bzoj 1014 splay
首先我们可以用splay来维护这个字符串,那么对于某两个位置的lcp,维护每个节点的子树的hash,然后二分判断就好了. /************************************** ...
- hdu 1556(线段树之扫描线)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1556 Color the ball Time Limit: 9000/3000 MS (Java/Ot ...
- Ribbon/Feign/Zuul retry
原文 https://github.com/spring-cloud/spring-cloud-netflix/issues/1577 I'm using Spring Cloud Camden SR ...
- Python学习笔记 - day10 - 正则表达式
正则表达式 字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在.比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样 ...
- java===java基础学习(6)---流程控制,for,if,switch,continue,break
注意点: for循环的用法和python截然不同,注意格式 switch~,switch对应的case每当执行完毕都要break,由于基本不怎么用switch,所以作为了解. 中断流程控制语句,请考虑 ...
- golang中 return如果返回指针比大型struct性能高
type tt struct{ aa int bb int cc int str string } func func_rstruct () tt{ t:=tt{1,2,3,"8888888 ...
- maven项目的多级目录
刚刚把一个开源的项目变成maven项目来进行管理,由于是多级的目录(以前配置的都是单级的目录),所以记录一下pom文件是怎么配置的. 一.目录结构 如下,maven的结构图,红字是表示完整的项目
- 2:django models Making queries
这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...
- HDU-5280
Senior's Array Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...