BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4589
【题目大意】
有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种
【题解】
后手必胜,则sg为0,那么就是求n个m以内的数xor为0的情况有几种,
首先筛出素数,保存素数的个数数组,利用FWT计算c[i^j]=a[i]*b[j],
计算n次的结果逆向变化回来就是最终的sg个数数组,
在计算n次c[i]=a[i]*b[i]的过程中,等价于计算c[i]=a[i]^n,
这里我们可以用快速幂优化一个log。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=100000;
const LL mod=1e9+7;
LL a[N],u;
int p[N],n,m;
void FWT(LL*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
LL x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
}
}
void UFWT(LL*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
LL x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod*u%mod,a[i+j+d]=(x-y+mod)%mod*u%mod;
}
}
LL pow(LL a,LL b,LL p){LL t=1;for(a%=p;b;b>>=1LL,a=a*a%p)if(b&1LL)t=t*a%p;return t;}
int main(){
for(int i=2;i<=50000;i++)p[i]=1;
for(int i=2;i<=50000;i++)if(p[i]){
for(int j=2;i*j<=50000;j++)p[i*j]=0;
}u=pow(2,mod-2,mod);
while(~scanf("%d%d",&n,&m)){
int len=1;while(len<=m)len<<=1;
for(int i=0;i<len;i++)a[i]=p[i]&(i<=m);
FWT(a,len);
for(int i=0;i<len;i++)a[i]=pow(a[i],n,mod);
UFWT(a,len);
printf("%lld\n",a[0]);
}return 0;
}
BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)的更多相关文章
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...
- BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)
BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...
随机推荐
- TOYS(计算几何基础+点与直线的位置关系)
题目链接:http://poj.org/problem?id=2318 题面: TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...
- Centos 6.5下安装vsftpd服务器
1.查看是否安装vsftp [root@localhost ~]#rpm -qa|grep vsftpd 如果出现 vsftpd-2.2.2-13.el6_6.1.x86_64 则说明已经安装了v ...
- Spring Boot提供的特性
一.导览 本文主要按以下模块介绍spring Boot(1.3.6.RELEASE)提供的特性. SpringApplication类 外部化配置 Profiles 日志 开发WEB应用 Securi ...
- AlertDialog.Builder 显示为白色 蓝色字
AlertDialog.Builder dialog = new AlertDialog.Builder( getActivity(),AlertDialog.THEME_HOLO_LIGHT);
- Python模块学习 - Argparse
argparse模块 在Python中,argparse模块是标准库中用来解析命令行参数的模块,用来替代已经过时的optparse模块.argparse模块能够根据程序中的定义从sys.argv中解析 ...
- python并发模块之concurrent.futures(二)
python并发模块之concurrent.futures(二) 上次我们简单的了解下,模块的一些基本方法和用法,这里我们进一步对concurrent.futures做一个了解和拓展.上次的内容点这. ...
- 调用手机端硬件功能 汇总(android/ios) Native.js示例汇总
Native.js示例汇总 NJS Native.JS 示例 Native.js虽然强大和开放,但很多web开发者因为不熟悉原生API而难以独立完成.这篇帖子的目的就是汇总各种写好的NJS代码,方便w ...
- 听justjavac大神live前端的入门与进阶小笔记
代码规范 代码强壮,调试代码 少用变量,多用常量 少用for循环,why循环,多用函数式, 不要直接去使用框架 刷题 提高编程思维 用js去做c语音的问题 阅读别人代码,去看别人的代码 a+b> ...
- C语言 ,两个字符串参数,判断是否包含另一个字符串,返回所在位置
char * cyp(char *s1,char *s2) { char *p = NULL; char *q = NULL; char *q1 = NULL; while(*s1!='\0') { ...
- python标准库之【socket】
socket通常也称作”套接字“.网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket.socket 是网络连接端点.例如当你的Web浏览器请求www.fishc. ...