[NOIP2014]寻找道路

题目描述 Description

在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1.路径上的所有点的出边所指向的点都直接或间接与终点连通。

2.在满足条件1的情况下使路径最短。

注意:图G中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入描述 Input Description

第一行有两个用一个空格隔开的整数n和m,表示图有n个点和m条边。

接下来的m行每行2个整数x、y,之间用一个空格隔开,表示有一条边从点x指向点y。

最后一行有两个用一个空格隔开的整数s、t,表示起点为s,终点为t。

输出描述 Output Description

输出文件名为road.out。

输出只有一行,包含一个整数,表示满足题目描述的最短路径的长度。如果这样的路径不存在,输出-1。

样例输入 Sample Input

road.in

road.out

3 2

1 2

2 1

1 3

-1

样例输出 Sample Output

road.in

road.out

6 6

1 2

1 3

2 6

2 5

4 5

3 4

1 5

3

数据范围及提示 Data Size & Hint

对于30%的数据,0< n ≤10,0< m ≤20;

对于60%的数据,0< n ≤100,0< m ≤2000;

对于100%的数据,0< n ≤10,000,0< m ≤200,000,0< x,y,s,t≤n,x≠t。

试题分析:反向建边比较好求每个点是否可以经过,DFS跑一遍就可以知道。

然后再忽略不合法的点,跑一遍SPFA           20分钟1A

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
//#include<cmath> using namespace std;
const int INF = 9999999;
#define LL long long inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
int N,M;
int Node[200001],Root[200001],Next[200001];
int cnt; bool vis[10001];
int to[10001]; int dis[10001];
bool inq[10001];int que[10001];
int S,T; void addedge(int u,int v){
cnt++;
Node[cnt]=v;
Next[cnt]=Root[u];
Root[u]=cnt;
return ;
}
void outto(int x){
vis[x]=true;
for(int k=Root[x];k;k=Next[k]){
to[Node[k]]--;
if(!vis[Node[k]]) outto(Node[k]);
}
return ;
}
int SPFA(int s,int t){
if(!vis[s]||!vis[t]) return -1;
memset(inq,false,sizeof(inq));
memset(dis,INF,sizeof(dis));
dis[s]=0; inq[s]=true; int tail=1; que[tail]=s;
for(int head=1;head<=tail;head++){
for(int x=Root[que[head]];x;x=Next[x]){
if(vis[Node[x]]&&dis[Node[x]]>dis[que[head]]+1){
dis[Node[x]]=dis[que[head]]+1;
if(!inq[Node[x]]){
inq[Node[x]]=true;
que[++tail]=Node[x];
}
}
}
inq[que[head]]=false;
}
if(dis[t]>=INF) return -1;
return dis[t];
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(),M=read();
for(int i=1;i<=M;i++){
int x=read(),y=read();
addedge(y,x);to[x]++;
}
S=read(),T=read();
outto(T);
for(int i=1;i<=N;i++)
if(!to[i]&&vis[i]==true) vis[i]=true;
else vis[i]=false;
printf("%d\n",SPFA(T,S));
return 0;
}

【DFS】【图论】NOIP2014寻找道路的更多相关文章

  1. NOIP2014 寻找道路

    2.寻找道路 (road.cpp/c/pas) [问题描述] 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指 ...

  2. 【洛谷P2296】[NOIP2014]寻找道路

    寻找道路 题目链接 这道题非常的水,按照题意, 先反向建边,从终点搜索,标记出可以到达终点的点 然后枚举一遍,判断出符合条件1的点 再从起点搜索一遍就可以了 #include<iostream& ...

  3. [NOIP2014]寻找道路(图论)

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  4. 1807. [NOIP2014]寻找道路P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  5. [洛谷P2296] NOIP2014 寻找道路

    问题描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  6. [NOIP2014]寻找道路 题解

    题目大意: 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足 ...

  7. luogu2296 [NOIp2014]寻找道路 (bfs)

    反着建边,从T bfs找合法的点,然后再正着bfs一下求最短路就行了 #include<bits/stdc++.h> #define pa pair<int,int> #def ...

  8. NOIP2014 day2 t2 寻找道路

    寻找道路 NOIP2014 day2 t2 描述 在有向图 G 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到 终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指向的 ...

  9. 【NOIP14 D2T2】寻找道路

    Source and Judge NOIP2014 提高组 D2T2Luogu2296Caioj1567 Problem [Description] 在有向图 G 中,每条边的长度均为 1,现给定起点 ...

随机推荐

  1. 复现VGG19训练自定义图像分类

    1.复现VGG训练自定义图像分类,成功了哈哈. 需要代码工程可联系博主qq号,在左边连接可找到. 核心代码: # coding:utf-8 import tensorflow as tf import ...

  2. js中三种定义变量 const, var, let 的区别

    js中三种定义变量的方式const, var, let的区别 1.const定义的变量不可以修改,而且必须初始化. 1 const b = 2;//正确 2 // const b;//错误,必须初始化 ...

  3. 制作Solaris系统的USB启动盘

    制作方法: 1. wget http://192.168.2.5/surefiler-installer/2011-12-09/devel-2011.12.9.tgz 2. cd /root tar  ...

  4. Apache的Commons Lang和BeanUtils

    1.字符串的空判断 //isEmpty System.out.println(StringUtils.isEmpty(null));      // true System.out.println(S ...

  5. 关于shutdown和close

    示例代码: void str_cli(FILE *fp, int sockfd) { pid_t pid; char sendline[MAXLINE], recvline[MAXLINE]; ) { ...

  6. FC4-i386-SRPMS

    [重点] http://archives.fedoraproject.org/pub/archive/fedora/linux/core/6/ http://archives.fedoraprojec ...

  7. 解决sql server中批处理过程中“'CREATE/ALTER PROCEDURE 必须是查询批次中的第一个语句”

    在批处理中加字段或表或视图或存储过程是否存在的判断 -----------------------------------------line----------------------------- ...

  8. JAVA常见的集合类

    关系的介绍: Set(集):集合中的元素不按特定方式排序,并且没有重复对象.他的有些实现类能对集合中的对象按特定方式排序. List(列表):集合中的元素按索引位置排序,可以有重复对象,允许按照对象在 ...

  9. android 与JS之间的交互

    在页面布局很复杂并且是动态的时候,android本身的控件就变得不是那么地灵活了,只有借助于网页的强大布局能力才能实现,但是在操作html页面的同时也需要与android其它的组件存在交互,比如说 在 ...

  10. C++ STL结构总结

    1. 什么是STL 它的全名是stand template library, 标准模板库,主要是将一些结构和算法写成模板,以便能够实现对任意类型的对象都可以操作,而不需要再一次去写一些算法及结构. 它 ...