题意

题目链接

给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数

Sol

神仙题Orz

首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\(i\)个数,他们的乘积为\(j\)的方案数

设\(g[k] = [\exists a_i = k]\)

转移的时候

\[f[i + 1][(j * k) \% M] += f[i][j] * g[k]
\]

不难发现每次的转移都是相同的,因此可以直接矩阵快速幂,时间复杂度变为\(logN M^2\)

观察上面的式子,如果我们能把\((j * k) \% M\),变成\((j + k) \% M\)的话,就是一个循环卷积的形式了

这里可以用原根来实现,设\(g\)表示\(M\)的原根,\(mp[i] = j\)表示\(g^j = i\)

直接对每个物品构造生成函数,利用mp转移即可

因为转移是个循环卷积,所以统计答案的时候应该把第\(i\)项和第\(i+m-1\)项的系数加起来

至于为啥只统计一项。

#include<bits/stdc++.h>
using namespace std;
const int mod = 1004535809, G = 3, Gi = 334845270, MAXN = 1e5 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, X, S;
int r[MAXN], lim, L, ind[MAXN], s[MAXN], f[MAXN], a[MAXN], b[MAXN];
int mul(int a, int b) {
return 1ll * a * b % mod;
}
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int dec(int x, int y) {
return x - y < 0 ? x - y + mod : x - y;
}
int fp(int a, int p, int mod) {
int base = 1;
while(p) {
if(p & 1) base = 1ll * base * a % mod;
a = 1ll * a * a % mod; p >>= 1;
}
return base;
}
int GetG(int x) {
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) {
if(!(tp % i)) {
q[++tot] = i;
while(!(tp % i)) tp /= i;
}
}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
}
void NTT(int *a, int N, int type) {
for(int i = 1; i < N; i++) if(i < r[i]) swap(a[i], a[r[i]]);
for(int mid = 1; mid < N; mid <<= 1) {
int R = mid << 1, Wn = fp(type == 1 ? G : Gi, (mod - 1) / R, mod);
for(int j = 0; j < lim; j += R) {
for(int w = 1, k = 0; k < mid; k++, w = mul(w, Wn)) {
int x = a[j + k], y = mul(w, a[j + k + mid]);
a[j + k] = add(x, y);
a[j + k + mid] = dec(x, y);
}
}
}
if(type == -1) {
for(int i = 0, inv = fp(lim, mod - 2, mod); i < N; i++) a[i] = mul(a[i], inv);
}
}
void mul(int *a1, int *b1, int *c) {
memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));//tag
for(int i = 0; i < M - 1; i++) a[i] = a1[i], b[i] = b1[i];
NTT(a, lim, 1); NTT(b, lim, 1);
for(int i = 0; i < lim; i++) a[i] = mul(a[i], b[i]);
NTT(a, lim, -1);
for(int i = 0; i < M - 1; i++) c[i] = add(a[i], a[i + M - 1]);
}
void Pre() {
lim = 1;
while(lim <= 2 * (M - 2)) lim <<= 1, L++;
for(int i = 0; i < lim; i++) r[i] = (r[i >> 1] >> 1) | (i & 1) << (L - 1);
int d = GetG(M);
for(int i = 0; i < M - 1; i++) ind[fp(d, i, M)] = i;
}
int main() {
N = read(); M = read(); X = read(); S = read();
Pre();
for(int i = 1; i <= S; i++) {
int x = read();
if(x) f[ind[x]]++;
}
s[ind[1]] = 1;
while(N) {
if(N & 1) mul(s, f, s);
mul(f, f, f); N >>= 1;
}
printf("%d", s[ind[X]]);
return 0;
}
/*
40000000 3 1 2
1 2 4 3 1 2
1 2
*/

BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)的更多相关文章

  1. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  2. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  3. bzoj 3992: [SDOI2015]序列统计 NTT+原根

    今天开始学习丧心病狂的多项式qaq......    . code: #include <bits/stdc++.h> #define ll long long #define setIO ...

  4. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  5. [SDOI2015]序列统计(NTT+求原根)

    题目 [SDOI2015]序列统计 挺好的题!!! 做法 \(f[i][j]\)为第\(i\)个数前缀积在模\(M\)意义下为\(j\) 显然是可以快速幂的:\[f[2*i][j]=\sum\limi ...

  6. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  7. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  8. 【BZOJ】3992: [SDOI2015]序列统计 NTT+生成函数

    [题意]给定一个[0,m-1]范围内的数字集合S,从中选择n个数字(可重复)构成序列.给定x,求序列所有数字乘积%m后为x的序列方案数%1004535809.1<=n<=10^9,3< ...

  9. BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...

随机推荐

  1. Python多继承解析顺序的C3线性算法流程解析

    Python多继承MRO 在Python2.1中,采用了经典类,使用深度优先算法解析. Python2.2中,引入了新式类,使用深度优先算法和广度优先算法. 在Python2.3以后的版本中,经典类和 ...

  2. python全栈开发_day5_字符串及列表类型

    一:字符串 1)优先掌握知识点. a=" 21j3:b12jk:b3j12:3bjk12 " #内置方法之strip print(a.strip(" ")) # ...

  3. 数组模拟单向链表例题(UVa11988)

    指针的链表实现方式是,当前节点的next指向下一个节点,用数组模拟就是 for(int i=next[0];i!=0;i=next[i]) i=next[i]:就是一条链. 例题: 你有一个破损的键盘 ...

  4. [转] vagrant学习笔记 - provision

    [From]  https://blog.csdn.net/54powerman/article/details/50684844 从字面上来看,provision是准备,实现的功能是在原生镜像的基础 ...

  5. linux 查看进程启动时,用户的工作目录

    在linux下查看进程大家都会想到用 ps -ef|grep XXX可是看到的不是全路径,怎么看全路径呢?每个进程启动之后在 /proc下面有一个于pid对应的路径例如:ps -ef|grep pyt ...

  6. axios简单介绍

    axios的配置,get,post,axiso的同步问题解决 一.缘由 vue-resoure不更新维护,vue团队建议使用axios. 二.axios安装 1.利用npm安装npm install ...

  7. Macaca 等待机制

    看代码注释todo 写博客 服务写脚本开吧 , 因为窗口太多,  不知道要去哪关闭服务 开的话无所谓 , 哪里都能开 要确认是否有开 , 直接跑代码 下面的要先过 别人的环境 工具软件自己的问题 不支 ...

  8. 《大数据日知录》读书笔记-ch2数据复制与一致性

    CAP理论:Consistency,Availability,Partition tolerance 对于一个分布式数据系统,CAP三要素不可兼得,至多实现其二.要么AP,要么CP,不存在CAP.分布 ...

  9. (转)bash条件判断之if语句

    http://blog.51cto.com/64314491/1629175---------bash条件判断之if语句(一) http://blog.51cto.com/64314491/16292 ...

  10. Javascript面向对象编程(转)

    http://blog.csdn.net/lmj623565791/article/details/29210679 其实,从这个面向对象编程的例子来看,思路还是很清晰的. 第一步: 构造函数,用于初 ...