Oracle Schema Objects——Tables——Table Compression
Table Compression
表压缩
The database can use table compression to reduce the amount of storage required for the table.
数据库可以使用表压缩来消除数据块中的重复值。
Compression saves disk space, reduces memory use in the database buffer cache, and in some cases speeds query execution. Table compression is transparent to database applications.
对于数据高度冗余的表,压缩可以节省磁盘空间,减少数据库高速缓存中的内存使用,并在某些情况下可以加快查询执行速度。表压缩对数据库应用程序是透明的。
Basic and OLTP Table Compression
基本/OLTP
Dictionary-based table compression provides good compression ratios for heap-organized tables. Oracle Database supports the following types of dictionary-based table compression:
基于字典的表压缩提供了很好的压缩率。Oracle 数据库支持以下类型的表压缩:
Basic table compression 基本表压缩 |
This type of compression is intended for bulk load operations. The database does not compress data modified using conventional DML. You must use direct path loads, ALTER TABLE . . . MOVE operations, or online table redefinition to achieve basic compression. 这种类型的压缩只能压缩由直接路径加载插入的数据,只支持有限的数据类型和 SQL 操作。 |
OLTP table compression OLTP 表压缩 |
This type of compression is intended for OLTP applications and compresses data manipulated by any SQL operation. 这种类型的压缩用于 OLTP应用程序,并可压缩任何 SQL 操作的数据。 |
For basic and OLTP table compression, the database stores compressed rows in row-major format.
数据库以 行主要格式存储压缩行。
All columns of one row are stored together, followed by all columns of the next row, and so on
一个行的所有列都存储在一起,接下来是下一行的所有列,依次类推。
Duplicate values are replaced with a short reference to a symbol table stored at the beginning of the block.
重复值被替换为一个存储在块开始处的符号表短引用。
Thus, information needed to re-create the uncompressed data is stored in the data block itself.
因此,重新创建未压缩数据所需的信息存储在数据块本身中。
Compressed data blocks look much like normal data blocks. Most database features and functions that work on regular data blocks also work on compressed blocks.
压缩的数据块看起来跟正常的数据块差不多。在常规数据块上能正常工作的大多数数据库功能,也可以在压缩的数据块上正常工作。
You can declare compression at the tablespace, table, partition, or subpartition level. If specified at the tablespace level, then all tables created in the tablespace are compressed by default.
您可以在表空间、 表、 分区或子分区等级别声明压缩。如果在表空间级指定了压缩,则在该表空间中创建的所有表在缺省情况下都是压缩的。
The following statement applies OLTP compression to the orders table:
下面的语句将 OLTP 压缩应用于 orders 表:
ALTER TABLE oe.orders COMPRESS FOR OLTP;
The following example of a partial CREATE TABLE statement specifies OLTP compression for one partition and basic compression for the other partition:
如下所示的 CREATE TABLE 语句示例片断,指定其中一个分区为 OLTP 压缩,而其他分区为基本压缩:
CREATE TABLE sales (
prod_id NUMBER NOT NULL,
cust_id NUMBER NOT NULL, ... )
PCTFREE 5 NOLOGGING NOCOMPRESS
PARTITION BY RANGE (time_id)
( partition sales_2008 VALUES LESS THAN(TO_DATE(...)) COMPRESS BASIC,
partition sales_2009 VALUES LESS THAN (MAXVALUE) COMPRESS FOR OLTP );
Hybrid Columnar Compression
With Hybrid Columnar Compression, the database stores the same column for a group of rows together. The data block does not store data in row-major format, but uses a combination of both row and columnar methods.
Storing column data together, with the same data type and similar characteristics, dramatically increases the storage savings achieved from compression. The database compresses data manipulated by any SQL operation, although compression levels are higher for direct path loads. Database operations work transparently against compressed objects, so no application changes are required.
Types of Hybrid Columnar Compression
If your underlying storage supports Hybrid Columnar Compression, then you can specify the following compression types, depending on your requirements:
- Warehouse compression
This type of compression is optimized to save storage space, and is intended for data warehouse applications. - Online archival compression
This type of compression is optimized for maximum compression levels, and is intended for historical data and data that does not change.
To achieve warehouse or online archival compression, you must use direct path loads, ALTER TABLE . . . MOVE operations, or online table redefinition.
Hybrid Columnar Compression is optimized for Data Warehousing and decision support applications on Exadata storage. Exadata maximizes the performance of queries on tables that are compressed using Hybrid Columnar Compression, taking advantage of the processing power, memory, and Infiniband network bandwidth that are integral to the Exadata storage server.
Other Oracle storage systems support Hybrid Columnar Compression, and deliver the same space savings as on Exadata storage, but do not deliver the same level of query performance. For these storage systems, Hybrid Columnar Compression is ideal for in-database archiving of older data that is infrequently accessed.
Compression Units
Hybrid Columnar Compression uses a logical construct called a compression unit to store a set of rows. When you load data into a table, the database stores groups of rows in columnar format, with the values for each column stored and compressed together. After the database has compressed the column data for a set of rows, the database fits the data into the compression unit.
For example, you apply Hybrid Columnar Compression to a daily_sales table. At the end of every day, you populate the table with items and the number sold, with the item ID and date forming a composite primary key. Table 2-1 shows a subset of the rows in daily_sales.
Table 2-1 Sample Table daily_sales
Item_ID |
Date |
Num_Sold |
Shipped_From |
Restock |
1000 |
01-JUN-11 |
2 |
WAREHOUSE1 |
Y |
1001 |
01-JUN-11 |
0 |
WAREHOUSE3 |
N |
1002 |
01-JUN-11 |
1 |
WAREHOUSE3 |
N |
1003 |
01-JUN-11 |
0 |
WAREHOUSE2 |
N |
1004 |
01-JUN-11 |
2 |
WAREHOUSE1 |
N |
1005 |
01-JUN-11 |
1 |
WAREHOUSE2 |
N |
Assume that the rows in Table 2-1 are stored in one compression unit. Hybrid Columnar Compression stores the values for each column together, and then uses multiple algorithms to compress each column. The database chooses the algorithms based on a variety of factors, including the data type of the column, the cardinality of the actual values in the column, and the compression level chosen by the user.
As shown in Figure 2-5, each compression unit can span multiple data blocks. The values for a particular column may or may not span multiple blocks.
Figure 2-5 Compression Unit
Description of "Figure 2-5 Compression Unit"
Hybrid Columnar Compression has implications for row locking (see "Row Locks (TX)"). When an update occurs for a row in an uncompressed data block, only the updated row is locked. In contrast, the database must lock all rows in the compression unit if an update is made to any row in the unit. Updates to rows using Hybrid Columnar Compression cause rowids to change.
Note:
When tables use Hybrid Columnar Compression, Oracle DML locks larger blocks of data (compression units), which may reduce concurrency.
Oracle Schema Objects——Tables——Table Compression的更多相关文章
- Oracle Schema Objects——Tables——Oracle Data Types
Oracle Schema Objects Oracle Data Types 数据类型 Data Type Description NUMBER(P,S) Number value having a ...
- Oracle Schema Objects——Tables——TableStorage
Oracle Schema Objects Table Storage Oracle数据库如何保存表数据? Oracle Database uses a data segment in a table ...
- Oracle Schema Objects——Tables——TableType
Oracle Schema Objects Object Tables object type An Oracle object type is a user-defined type with a ...
- Oracle Schema Objects——Tables——Overview of Tables
Oracle Schema Objects Overview of Tables A table is the basic unit of data organization in an Oracle ...
- Oracle Schema Objects(Schema Object Storage And Type)
One characteristic of an RDBMS is the independence of physical data storage from logical data struct ...
- Oracle Schema Objects——伪列ROWID Pseudocolumn(ROWNUM、ROWID)
Oracle Schema Objects Oracle Schema Objects——Tables——Oracle Data Types Oracle伪列 在Oracle数据库之中为了实现完整的关 ...
- Oracle Schema Objects——PARTITION
Oracle Schema Objects 表分区 表- - 分区( partition )TABLE PARTITION 一段时间给出一个分区,这样方便数据的管理. 可以按照范围range分区,列表 ...
- Oracle Schema Objects——Index
索引主要的作用是查询优化. Oracle Schema Objects 查看执行计划的权限:查看执行计划plustrace:set autotrace trace exp stat(SP2-0618. ...
- Oracle Schema Objects——Sequences(伪列:nextval,currval)
Oracle Schema Objects 序列的作用 许多的数据库之中都会为用户提供一种自动增长列的操作,例如:在微软的Access数据库之中就提供了一种自动编号的增长列(ID列).在oracle数 ...
随机推荐
- 纯CSS弹出层,城市切换效果
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- KVC之-(id)valueForKey:(NSString *)key的实现原理与验证
KVC之-(id)valueForKey:(NSString *)key的实现原理与验证 2.-(id)valueForKey:(NSString *)key的实现原理与验证; #功能:使用一个字符串 ...
- lua工具库penlight--06数据(二)
词法扫描 虽然 Lua 的字符串模式匹配是非常强大,但需要更强大的东西.pl.lexer.scan可以提供标记字符串,按标记机分类数字.字符串等. > lua -lpl Lua 5.1.4 C ...
- 解决Linux环境下Tomcat启动卡住问题
最近发现在服务器上启动tomcat,会存在卡住的情况,这种情况是每次必现,通过搜索发现是随机数生成问题.解决方案如下 将$JAVA_HOME/jre/lib/security/Java.securit ...
- redis存储对象与对象序列化详解
redis主要存储类型最常用的五种数据类型: String Hash List Set Sorted set redis存储对象序列化和反序列化 首先来了解一下为什么要实现序列化 为什么要实现序列化接 ...
- The Definitive Guide To Django 2 学习笔记(八) 第四章 模板 (四)基本的模板标签和过滤器
标签 下面的部分概述了常见的Django标签. if/else {%if%} 标签 对一个变量值进行测试,如果结果为true,系统将会显示在{%if%} 和 {%endif%}之间的一切,看个例子: ...
- angularjs 手动启动
谷歌推的javascript框架angulajs相当火热,由于新项目的缘故,最近一直看angularjs.在看的时候,一直有个疑问,angularjs 核心依赖于DI(依赖注入).常用的方法是在页面的 ...
- visitor设计模式记录
数据类型通过枚举来区分是一种简单实用的做法. 缺点是使用的时候需要通过if .switch 去判断什么类型执行什么分支操作,说是缺点其实也要看具体场景.不过如果if代码多会导致代码很长是肯定的. 复杂 ...
- shell 颜色
PS1='\[\e[33;1m\][\u@\h \W]\\$ \[\e[m\]' echo -e "\033[30m 黑色字oldboy trainning \033[0m" ec ...
- SQL语句大全2
SQL 语句大全 --语 句 功 能 --数据操作 SELECT --从数据库表中检索数据行和列 INSERT --向数据库表添加新数据行 DELETE --从数据库表中删除数据行 UPDATE -- ...