Oracle Schema Objects

Table Compression

表压缩

The database can use table compression to reduce the amount of storage required for the table.

数据库可以使用表压缩来消除数据块中的重复值。

Compression saves disk space, reduces memory use in the database buffer cache, and in some cases speeds query execution. Table compression is transparent to database applications.

对于数据高度冗余的表,压缩可以节省磁盘空间,减少数据库高速缓存中的内存使用,并在某些情况下可以加快查询执行速度。表压缩对数据库应用程序是透明的。

Basic and OLTP Table Compression

基本/OLTP

Dictionary-based table compression provides good compression ratios for heap-organized tables. Oracle Database supports the following types of dictionary-based table compression:

基于字典的表压缩提供了很好的压缩率。Oracle 数据库支持以下类型的表压缩:

Basic table compression

基本表压缩

This type of compression is intended for bulk load operations. The database does not compress data modified using conventional DML. You must use direct path loads, ALTER TABLE . . . MOVE operations, or online table redefinition to achieve basic compression.

这种类型的压缩只能压缩由直接路径加载插入的数据,只支持有限的数据类型和 SQL 操作。

OLTP table compression

OLTP 表压缩

This type of compression is intended for OLTP applications and compresses data manipulated by any SQL operation.

这种类型的压缩用于 OLTP应用程序,并可压缩任何 SQL 操作的数据。

For basic and OLTP table compression, the database stores compressed rows in row-major format.

数据库以 行主要格式存储压缩行。

All columns of one row are stored together, followed by all columns of the next row, and so on

一个行的所有列都存储在一起,接下来是下一行的所有列,依次类推。

Duplicate values are replaced with a short reference to a symbol table stored at the beginning of the block.

重复值被替换为一个存储在块开始处的符号表短引用。

Thus, information needed to re-create the uncompressed data is stored in the data block itself.

因此,重新创建未压缩数据所需的信息存储在数据块本身中。

Compressed data blocks look much like normal data blocks. Most database features and functions that work on regular data blocks also work on compressed blocks.

压缩的数据块看起来跟正常的数据块差不多。在常规数据块上能正常工作的大多数数据库功能,也可以在压缩的数据块上正常工作。

You can declare compression at the tablespace, table, partition, or subpartition level. If specified at the tablespace level, then all tables created in the tablespace are compressed by default.

您可以在表空间、 表、 分区或子分区等级别声明压缩。如果在表空间级指定了压缩,则在该表空间中创建的所有表在缺省情况下都是压缩的。

The following statement applies OLTP compression to the orders table:

下面的语句将 OLTP 压缩应用于 orders 表:

ALTER TABLE oe.orders COMPRESS FOR OLTP;

The following example of a partial CREATE TABLE statement specifies OLTP compression for one partition and basic compression for the other partition:

如下所示的 CREATE TABLE 语句示例片断,指定其中一个分区为 OLTP 压缩,而其他分区为基本压缩:

CREATE TABLE sales (
    prod_id     NUMBER     NOT NULL,
    cust_id     NUMBER     NOT NULL, ... )
 PCTFREE 5 NOLOGGING NOCOMPRESS
 PARTITION BY RANGE (time_id)
 ( partition sales_2008 VALUES LESS THAN(TO_DATE(...)) COMPRESS BASIC,
   partition sales_2009 VALUES LESS THAN (MAXVALUE) COMPRESS FOR OLTP );

Hybrid Columnar Compression

With Hybrid Columnar Compression, the database stores the same column for a group of rows together. The data block does not store data in row-major format, but uses a combination of both row and columnar methods.

Storing column data together, with the same data type and similar characteristics, dramatically increases the storage savings achieved from compression. The database compresses data manipulated by any SQL operation, although compression levels are higher for direct path loads. Database operations work transparently against compressed objects, so no application changes are required.

Types of Hybrid Columnar Compression

If your underlying storage supports Hybrid Columnar Compression, then you can specify the following compression types, depending on your requirements:

  • Warehouse compression
    This type of compression is optimized to save storage space, and is intended for data warehouse applications.
  • Online archival compression
    This type of compression is optimized for maximum compression levels, and is intended for historical data and data that does not change.

To achieve warehouse or online archival compression, you must use direct path loads, ALTER TABLE . . . MOVE operations, or online table redefinition.

Hybrid Columnar Compression is optimized for Data Warehousing and decision support applications on Exadata storage. Exadata maximizes the performance of queries on tables that are compressed using Hybrid Columnar Compression, taking advantage of the processing power, memory, and Infiniband network bandwidth that are integral to the Exadata storage server.

Other Oracle storage systems support Hybrid Columnar Compression, and deliver the same space savings as on Exadata storage, but do not deliver the same level of query performance. For these storage systems, Hybrid Columnar Compression is ideal for in-database archiving of older data that is infrequently accessed.

Compression Units

Hybrid Columnar Compression uses a logical construct called a compression unit to store a set of rows. When you load data into a table, the database stores groups of rows in columnar format, with the values for each column stored and compressed together. After the database has compressed the column data for a set of rows, the database fits the data into the compression unit.

For example, you apply Hybrid Columnar Compression to a daily_sales table. At the end of every day, you populate the table with items and the number sold, with the item ID and date forming a composite primary key. Table 2-1 shows a subset of the rows in daily_sales.

Table 2-1 Sample Table daily_sales

Item_ID

Date

Num_Sold

Shipped_From

Restock

1000

01-JUN-11

2

WAREHOUSE1

Y

1001

01-JUN-11

0

WAREHOUSE3

N

1002

01-JUN-11

1

WAREHOUSE3

N

1003

01-JUN-11

0

WAREHOUSE2

N

1004

01-JUN-11

2

WAREHOUSE1

N

1005

01-JUN-11

1

WAREHOUSE2

N

Assume that the rows in Table 2-1 are stored in one compression unit. Hybrid Columnar Compression stores the values for each column together, and then uses multiple algorithms to compress each column. The database chooses the algorithms based on a variety of factors, including the data type of the column, the cardinality of the actual values in the column, and the compression level chosen by the user.

As shown in Figure 2-5, each compression unit can span multiple data blocks. The values for a particular column may or may not span multiple blocks.

Figure 2-5 Compression Unit

Description of "Figure 2-5 Compression Unit"

Hybrid Columnar Compression has implications for row locking (see "Row Locks (TX)"). When an update occurs for a row in an uncompressed data block, only the updated row is locked. In contrast, the database must lock all rows in the compression unit if an update is made to any row in the unit. Updates to rows using Hybrid Columnar Compression cause rowids to change.

Note:

When tables use Hybrid Columnar Compression, Oracle DML locks larger blocks of data (compression units), which may reduce concurrency.

Oracle Schema Objects——Tables——Table Compression的更多相关文章

  1. Oracle Schema Objects——Tables——Oracle Data Types

    Oracle Schema Objects Oracle Data Types 数据类型 Data Type Description NUMBER(P,S) Number value having a ...

  2. Oracle Schema Objects——Tables——TableStorage

    Oracle Schema Objects Table Storage Oracle数据库如何保存表数据? Oracle Database uses a data segment in a table ...

  3. Oracle Schema Objects——Tables——TableType

    Oracle Schema Objects Object Tables object type An Oracle object type is a user-defined type with a ...

  4. Oracle Schema Objects——Tables——Overview of Tables

    Oracle Schema Objects Overview of Tables A table is the basic unit of data organization in an Oracle ...

  5. Oracle Schema Objects(Schema Object Storage And Type)

    One characteristic of an RDBMS is the independence of physical data storage from logical data struct ...

  6. Oracle Schema Objects——伪列ROWID Pseudocolumn(ROWNUM、ROWID)

    Oracle Schema Objects Oracle Schema Objects——Tables——Oracle Data Types Oracle伪列 在Oracle数据库之中为了实现完整的关 ...

  7. Oracle Schema Objects——PARTITION

    Oracle Schema Objects 表分区 表- - 分区( partition )TABLE PARTITION 一段时间给出一个分区,这样方便数据的管理. 可以按照范围range分区,列表 ...

  8. Oracle Schema Objects——Index

    索引主要的作用是查询优化. Oracle Schema Objects 查看执行计划的权限:查看执行计划plustrace:set autotrace trace exp stat(SP2-0618. ...

  9. Oracle Schema Objects——Sequences(伪列:nextval,currval)

    Oracle Schema Objects 序列的作用 许多的数据库之中都会为用户提供一种自动增长列的操作,例如:在微软的Access数据库之中就提供了一种自动编号的增长列(ID列).在oracle数 ...

随机推荐

  1. Hive 数据倾斜原因及解决方法(转)

    在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...

  2. mysql-group-replication 测试环境的搭建与排错

    mysql-group-replication 是由mysql-5.7.17这个版本提供的强一致的高可用集群解决方案 1.环境规划 主机ip 主机名 172.16.192.201 balm001 17 ...

  3. MVC页面跳转,路径重复的问题

    window.location.replace("../Home/xxx") 这是js路径跳转的示范,如果普通超链接也一样 前面加一个../

  4. AutoHotKey入门

    首先它要编译.ahk后缀的脚本才能执行.脚本里再写键盘触发监听之类的逻辑. 所以并非单单只是热键启动那么简单,可以组合出复杂的功能,甚至支持正则表达式 理论上扩展性比按键精灵差,易用性大大优于按键精灵 ...

  5. datatables 相关文章

    http://blog.csdn.net/zhu_xiao_yuan/article/details/51252300 datatables参数配置详解  http://blog.csdn.net/j ...

  6. elasticsearch插件三—— Marvel插件安装详解

    2016年05月21日 22:58:13 阅读数:23058 一.Marvel插件介绍 Marvel插件:在簇中从每个节点汇集数据.这个插件必须每个节点都得安装. Marvel是Elasticsear ...

  7. 理解Java中字符流与字节流

    1. 什么是流 Java中的流是对字节序列的抽象,我们可以想象有一个水管,只不过现在流动在水管中的不再是水,而是字节序列.和水流一样,Java中的流也具有一个"流动的方向",通常可 ...

  8. 请说明meta标签的作用。

    请说明meta标签的作用. 解答: meta是用来在HTML文档中模拟HTTP协议的响应头报文.meta 标签用于网页的<head>与</head>中,meta 标签的用处很多 ...

  9. ASP.NET中JSON对时间进行序列化和反序列化

    JSON格式不直接支持日期和时间.DateTime值显示为“/Date(0+0800)/”形式的JSON字符串,其中第一个数字是GMT时区中自1970年1月1 日午夜以来按正常时间(非夏令时)经过的毫 ...

  10. MemoryStream类读写内存

    和FileStream一样,MemoryStream和BufferedStream都派生自基类Stream,因此它们有很多共同的属性和方法,但是每一个类都有自己独特的用法.这两个类都是实现对内存进行数 ...