51NOD 1934:受限制的排列——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1934
听说会笛卡尔树的人这题都秒了啊……
参考:https://blog.csdn.net/vectorxj/article/details/79475244
首先题得看懂(我就是看题解才看懂题面的……),它告诉你对于i,我们有最大的(li,ri)使得这个区间内pi最小。
于是最小的数一定是(1,n)区间内的,设为pos,那么我们只需要递归处理(1,pos-1)和(pos+1,n)的即可。
当然我们的情况数要乘以给左区间的数的情况数。
中途如果出现各种无解情况直接返回0即可。
注意读入优化!
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
struct fastio{
static const int bs=;
char c(){
static char buf[bs],*S=buf,*T=buf;
if(S==T){
T=(S=buf)+fread(buf,,bs,stdin);
if(S==T)return EOF;
}
return *S++;
}
int operator()(){
int X=;char ch=c();
if(ch==EOF)return ;
while(!isdigit(ch))ch=c();
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=c();
return X;
}
}read;
const int N=1e6+;
const int p=1e9+;
inline int qpow(int k,int n){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
map<int,int>mp[N];
int n,cnt,l[N],r[N];
int jc[N],inv[N];
void init(int k){
jc[]=;
for(int i=;i<=k;i++)jc[i]=(ll)jc[i-]*i%p;
inv[k]=qpow(jc[k],p-);
for(int i=k-;i;i--)inv[i]=(ll)inv[i+]*(i+)%p;
inv[]=;
}
inline int C(int a,int b){
return (ll)jc[a]*inv[b]%p*inv[a-b]%p;
}
int work(int L,int R){
if(L>R)return ;
int pos=mp[L][R];
if(L==pos&&pos==R)return ;
if(pos<L||R<pos)return ;
return (ll)C(R-L,pos-L)*work(L,pos-)%p*work(pos+,R)%p;
}
int main(){
init(1e6);
while(n=read()){
for(int i=;i<=n;i++)mp[i].clear();
for(int i=;i<=n;i++)l[i]=read();
for(int i=;i<=n;i++)r[i]=read();
bool flag=;
for(int i=;i<=n;i++){
if(mp[l[i]].count(r[i]))flag=;
mp[l[i]][r[i]]=i;
}
if(!flag)printf("Case #%d: 0\n",++cnt);
else printf("Case #%d: %d\n",++cnt,work(,n));
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
51NOD 1934:受限制的排列——题解的更多相关文章
- 51nod 1934 受限制的排列——笛卡尔树
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1934 根据给出的信息,可以递归地把笛卡尔树建出来.一个点只应该有 0/1/2 ...
- 【51nod】1934 受限制的排列
题解 这题还要判无解真是难受-- 我们发现我们肯定能确定1的位置,1左右的两个区间是同理的可以确定出最小值的位置 我们把区间最小值看成给一个区间+1,构建出笛卡尔树,就求出了每一次取最小值和最小值左右 ...
- HAOI2006 (洛谷P2341)受欢迎的牛 题解
HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...
- 51nod 1812 树的双直径 题解【树形DP】【贪心】
老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...
- #P2341 [HAOI2006]受欢迎的牛 题解
题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...
- 51NOD 1709:复杂度分析——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1709 (我什么时候看到二进制贡献才能条件反射想到按位处理贡献呢……) 参 ...
- 51NOD 1559:车和矩形——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1559 波雷卡普有一个n×m,大小的棋盘,上面有k个车.他又放了q个矩形在 ...
- 51NOD 2026:Gcd and Lcm——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=2026 参考及推导:https://www.cnblogs.com/ivo ...
- 51NOD 1594:Gcd and Phi——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1594 参考及详细推导:http://www.cnblogs.com/ri ...
随机推荐
- 从零学习安全测试,从XSS漏洞攻击和防御开始
WeTest 导读 本篇包含了XSS漏洞攻击及防御详细介绍,包括漏洞基础.XSS基础.编码基础.XSS Payload.XSS攻击防御. 第一部分:漏洞攻防基础知识 XSS属于漏洞攻防,我们要研究 ...
- RabbitMQ基础教程之Spring&JavaConfig使用篇
RabbitMQ基础教程之Spring使用篇 相关博文,推荐查看: RabbitMq基础教程之安装与测试 RabbitMq基础教程之基本概念 RabbitMQ基础教程之基本使用篇 RabbitMQ基础 ...
- 内置方法(item系列)
class Foo: def __init__(self,name): self.name = name def __getitem__(self, item): # 获取时触发 print('get ...
- .NET MVC和.NET WEB api混用时注意事项
1.同时配置了mvc路由和api路由时,mvc路由无法访问(调用所有mvc路由全部404错误) 在Global.asax中,需注意路由注册的顺序,将api路由注册放在最后: 即将 void Appli ...
- Apache--Override参数详解
1 AuthConfig 允许使用所有的权限指令,他们包括AuthDBMGroupFile AuthDBMUserFile AuthGroupFile AuthName AuthTypeAut ...
- c++远征
---恢复内容开始--- 这两天初步接触了C++,抱着一种对这两个加号的理解的心态走进这门语言的学习. 1.mooc--慕课网c++课程链接:http://www.imooc.com/learn/34 ...
- holoeverywhere修改actionbar背景
<style name="Holo.Theme.Light.MyActionBar" parent="Holo.Base.Theme.Light.DarkActio ...
- Java中Collection和Collections的区别(转载)
转载来源:http://www.cnblogs.com/dashi/p/3597937.html 1.java.util.Collection 是一个集合接口(集合类的一个顶级接口).它提供了对集合对 ...
- Spring管理事务默认回滚的异常
一.默认方式 Spring的事务管理默认只对出现运行期异常(java.lang.RuntimeException及其子类),Error进行回滚. 如果一个方法抛出Exception或者Checked异 ...
- 《剑指offer》---把数组排成最小的数
本文算法使用python3实现 1 题目描述: 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组 $ [3,32,321] $ ,则打印出这 ...