http://www.lydsy.com/JudgeOnline/problem.php?id=2565

题目大意:

顺序和逆序读起来完全一样的串叫做回文串。比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同)。
输入长度为n的串S,求S的最长双回文子串T,即可将T分为两部分X,Y,(|X|,|Y|≥1)且X和Y都是回文串。
 
——————————————————————
看到回文串长度最大,先敲一个manacher算法。
然后思考如何更新每一个字符以其为起点和终点的最长回文串。
显然都跑一遍肯定是不行的(尝试过TLE…)
那么我们考虑一个很简单的事实,对于一个在某几个回文串的字符,显然当它属于mx靠前的回文串时以它为终点的回文串长度最长。
那么我们就有了一种近似O(n)的算法,通过记录我们最新一次更新的字符位置now,然后搜索每一个回文串,当回文串右端点超过了now的时候,就对now和右端点之间的字符更新。
同理处理另一种情况,然后枚举取最大值即可。
 
PS:我们已知回文串的中点i,怎么求在回文串内的j以其为终点的回文串长度。
我们有结论为j-i+1,简易证明:
我们知道我们最开始的时候是含有“#”插入的字符串处理,此时回文串的长度为2*(j-i)+1.
而实际上其中包含了“#”有j-i个(就是长度/2向下取整)。
相减得到j-i+1。
 
  1. #include<cstdio>
  2. #include<cstring>
  3. #include<algorithm>
  4. #define N 100010
  5. using namespace std;
  6. int left[*N],right[*N],mx,id,p[*N];
  7. char s[*N];
  8. int main(){
  9. scanf("%s",s+);
  10. int l=strlen(s+);
  11. s[]='@';
  12. for(int i=l;i>=;i--)s[i*]=s[i];
  13. for(int i=;i<=*l+;i+=)s[i]='#';
  14. s[*l+]='?';
  15. l=*l+;
  16. for(int i=;i<=l;i++){
  17. if(mx>i)p[i]=min(p[*id-i],mx-i);
  18. else p[i]=;
  19. while(s[i-p[i]]==s[i+p[i]])p[i]++;
  20. if(i+p[i]>mx){
  21. mx=i+p[i];
  22. id=i;
  23. }
  24. }
  25. int now=;
  26. for(int i=;i<=l;i++){
  27. if(i+p[i]->now){
  28. for(int j=now+;j<=i+p[i];j++){
  29. left[j]=j-i+;
  30. }
  31. now=i+p[i]-;
  32. }
  33. }
  34. now=l+;
  35. for(int i=l;i>=;i--){
  36. if(i-p[i]+<now){
  37. for(int j=now-;j>=i-p[i];j--){
  38. right[j]=i-j+;
  39. }
  40. now=i-p[i]+;
  41. }
  42. }
  43. int ans=;
  44. for(int i=;i<=l;i+=){
  45. ans=max(ans,left[i]+right[i+]);
  46. }
  47. printf("%d\n",ans);
  48. return ;
  49. }

BZOJ2565:最长双回文串——题解的更多相关文章

  1. BZOJ2565 最长双回文串 【Manacher】

    BZOJ2565 最长双回文串 Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为"abc",逆序为"c ...

  2. BZOJ2565最长双回文串——manacher

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同).输入长度为n的串S,求S的最长双回文子串T,即可将T分为两 ...

  3. bzoj2565: 最长双回文串 pam

    题意:找一个串中的最长连续两个回文子串长度 题解:建两个回文树,一个正着,一个反着,每次add之后last的长度就是后缀最长的回文串长度,然后两边加一遍即可 /******************** ...

  4. BZOJ2565:最长双回文串(Manacher)

    Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同). 输入长度为n的串S,求S的最长双回文子串T ...

  5. p4555&bzoj2565 最长双回文串

    传送门(洛谷) 传送门(bzoj) 题目 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 nnn 的串 SSS ...

  6. BZOJ2565: 最长双回文串(Manacher)

    Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同).输入长度为n的串S,求S的最长双回文子串T, ...

  7. bzoj千题计划305:bzoj2565: 最长双回文串(回文自动机)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2565 正着构造回文自动机 倒过来再构造一个回文自动机 分别求出以位置i开始的和结尾的最长回文串 # ...

  8. 2019.03.02 bzoj2565: 最长双回文串(pam)

    传送门 题意简述:问最长的由两个回文串连接而成最长字串长度. 思路: 正反串各建一个pampampam然后就完了. 代码: #include<bits/stdc++.h> #define ...

  9. BZOJ2565: 最长双回文串(回文树)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2565 记录一下每个点往前最长延伸位置,正反两遍,枚举分割点. #include<cstr ...

随机推荐

  1. java 二叉树的创建 遍历

    本来说复习一下BFS和DFS,辗转就来到了二叉树...本文包括二叉树的创建和遍历 概念 数据:1 2 3 4 5 6 7生成一颗二叉树 上面的数是数据,不是位置,要区别一下数据和位置 红色的代表位置, ...

  2. Qt-事件处理-鼠标事件

    根据书中的内容,简单的实现鼠标相关的内容 源代码如下 .h #ifndef MOUSEEVENT_H #define MOUSEEVENT_H #include <QMainWindow> ...

  3. List和Turple

    List 格式:classmates = ['Michael', 'Bob', 'Tracy'] 读取list长度用:len(classmetes) 索引:索引正向从0开始,逆向从-1开始 在末尾增加 ...

  4. 第六阶段·数据库MySQL及NoSQL实践 第2章·Redis

    01-Redis简介 02-Redis基本安装启动 03-Redis的配置文件基本使用 04-Redis安全管理 05-Redis安全持久化-RDB持久化 06-Redis安全持久化-AOF持久化 0 ...

  5. 初学DirectX(1)

    初学Direct X (1) Direct3D设备用于访问视频卡的帧缓冲区,以及后台缓冲区.由于IDE是vs2013,默认安装了direct 9,只需要在使用头文件(1)并像使用库文件(2)即可 #i ...

  6. Git版本库工作流程图想

    对照廖雪峰的教程,发现有很多难以理解的地方,画了一个图想方便以后参考 首先两个基本命令反应了版本库最本质的工作流程,后面的命令其实都基于此git add 把文件修改添加到暂存区git commit 在 ...

  7. (转) GEM透视阴影贴图

    转载:小道 透视阴影贴图(Perspective Shadow Maps, PSMs)是由Stamminger和Drettakis在 SIGGRAPH 2002上提出的一种阴影贴图(Shadow Ma ...

  8. spark-shell解析

    spark-shell 作用: 调用spark-submit脚本,如下参数 --classorg.apache.spark.repl.Main --name "Spark shell&quo ...

  9. 实现Bidirectional LSTM Classifier----深度学习RNN

    双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增 ...

  10. Apache——访问控制

    Order 指定执行允许访问规则和拒绝访问规则 Deny 定义拒绝访问列表 Allow 定义允许访问列表 Order allow,deny  先执行允许,再执行拒绝 Order deny,allow ...