最小生成树的Prim算法也是贪心算法的一大经典应用。Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树。

Prim算法过程:

一条边一条边地加, 维护一棵树。

初始 E = {}空集合, V = {任选的一个起始节点}

循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V。且(v1,v2)权值最小。

E = E + (v1,v2)
V = V + v2

最终E中的边是一棵最小生成树, V包含了全部节点。

 
以下图为例介绍Prim算法的执行过程。

Prim算法的过程从A开始 V = {A}, E = {}

选中边AF , V = {A, F}, E = {(A,F)} 

选中边FB, V = {A, F, B}, E = {(A,F), (F,B)}

选中边BD, V = {A, B, F, D},   E = {(A,F), (F,B), (B,D)}

选中边DE, V = {A, B, F, D, E},   E = {(A,F), (F,B), (B,D), (D,E)}
 
选中边BC, V = {A, B, F, D, E, c},   E = {(A,F), (F,B), (B,D), (D,E), (B,C)}, 算法结束。

Prim算法的证明:假设Prim算法得到一棵树P,有一棵最小生成树T。假设P和T不同,我们假设Prim算法进行到第(K – 1)步时选择的边都在T中,这时Prim算法的树是P’, 第K步时,Prim算法选择了一条边e = (u, v)不在T中。假设u在P’中,而v不在。

因为T是树,所以T中必然有一条u到v的路径,我们考虑这条路径上第一个点u在P’中,最后一个点v不在P’中,则路径上一定有一条边f = (x,y),x在P’中,而且y不在P’中。
我们考虑f和e的边权w(f)与w(e)的关系:

若w(f) > w(e),在T中用e换掉f (T中加上e去掉f),得到一个权值和更小的生成树,与T是最小生成树矛盾。
若w(f) < w(e), Prim算法在第K步时应该考虑加边f,而不是e,矛盾。

因此只有w(f) = w(e),我们在T中用e换掉f,这样Prim算法在前K步选择的边在T中了,有限步之后把T变成P,而树权值和不变, 从而Prim算法是正确的。
请仔细理解Prim算法——时刻维护一棵生成树。我们的证明构造性地证明了所有地最小生成树地边权(多重)集合都相同!

 
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。

 
输入

第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
输出
 
输出最小生成树的所有边的权值之和。
 
输入示例

9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
输出示例

37
 maxv=10001
n,m=list(map(int,input().split()))
E=[]
V=set([1])
cost=[]
for i in range(n+1):
a=[]
for j in range(n+1):
a.append(maxv)
cost.append(a)
for i in range(m):
s,e,w=list(map(int,input().split()))
cost[s][e]=w
cost[e][s]=w
closet=[0]
lowcost=[maxv]
for i in range(1,n+1):
closet.append(1)
lowcost.append(cost[1][i])
ans=0
for i in range(n-1):
k=0
for j in range(2,n+1):
if (lowcost[j]!=0) and (lowcost[j]<lowcost[k]):k=j for j in range(2,n+1):
if cost[j][k]<lowcost[j]:
lowcost[j]=cost[j][k]
closet[j]=k
ans+=lowcost[k]
lowcost[k]=0
print(ans)

[经典贪心算法]Prim算法的更多相关文章

  1. 图论篇2——最小生成树算法(kurskal算法&prim算法)

    基本概念 树(Tree) 如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree) 无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树. 生成 ...

  2. 最小生成树算法——prim算法

    prim算法:从某一点开始,去遍历相邻的边,然后将权值最短的边加入集合,同时将新加入边集中的新点遍历相邻的边更新边值集合(边值集合用来找出新的最小权值边),注意每次更新都需将cost数组中的点对应的权 ...

  3. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  4. Kruskal算法&Prim算法

    最小生成树是什么? Kruskal算法 图文转载自a2392008643的博客 此算法可以称为"加边法",初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最 ...

  5. Prim算法---最小生成树

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空 ...

  6. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  7. 数据结构:最小生成树--Prim算法

    最小生成树:Prim算法 最小生成树 给定一无向带权图.顶点数是n,要使图连通仅仅需n-1条边.若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost ...

  8. 最小生成树算法 prim kruskal两种算法实现 HDU-1863 畅通工程

    最小生成树 通俗解释:一个连通图,可将这个连通图删减任意条边,仍然保持连通图的状态并且所有边权值加起来的总和使其达到最小.这就是最小生成树 可以参考下图,便于理解 原来的图: 最小生成树(蓝色线): ...

  9. 实现prim算法

    如下找出该图的最小生成树 prim算法是求解该类问题的一种经典算法 Prim算法的基本思路:将图中的所有的顶点分为两类:树顶点(已经被选入生成树的顶点)和非树顶点(还未被选入生成树的顶点).首先选择任 ...

随机推荐

  1. 【Spark】源码分析之spark-submit

    在客户端执行脚本sbin/spark-submit的时候,通过cat命令查看源码可以看出,实际上在源码中将会执行bin/spark-class org.apache.spark.deploy.Spar ...

  2. 用PHP读取Excel、CSV文件

    PHP读取excel.csv文件的库有很多,但用的比较多的有: PHPOffice/PHPExcel.PHPOffice/PhpSpreadsheet,现在PHPExcel已经不再维护了,最新的一次提 ...

  3. linux系统快速安装宝塔

    宝塔面板分linux面板和windows面板,安装宝塔linux面板首先要访问宝塔官网查看对应版本进行选择 宝塔面板的安装需要注意的地方有: 1.纯净系统 2.确保是干净的操作系统,没有安装过其它环境 ...

  4. ES5拓展

    一.JSON拓展 1.JSON.parse(str,fun):将JSON字符串转为js对象 两个参数:str表示要处理的字符串:fun处理函数,函数有两个参数,属性名.属性值 // 定义json字符串 ...

  5. 理解Linux系统调用

    目录 1.什么是系统调用 2.linux的系统调用 3.linux系统调用实现 1.什么是系统调用 系统调用,指的是操作系统提供给用户程序调用的一组特殊接口,用户程序可以根据这组接口获得操作系统内核的 ...

  6. 使用OpenLayers发布地图

    OpenLayers是用于制作交互式Web地图的开源客户端JavaScript类库,制作的地图几乎可以在所有的浏览器中查看.因为是客户端类库,它不需要特殊的服务器端软件或配置,甚至不用下载任何东西就可 ...

  7. BZOJ1003_物流运输_KEY

    题目传送门 这是一道DP+最短路径的好题. 首先预处理每天每个点的最短路径. 用SPFA进行处理.即cost[i][j]为第i天到底j天的1到M点的最小花费. 就可以水水的DP. 设f[i]为第i天的 ...

  8. 全新Ubuntu-13.04安装配置redmine

    1. apt-get install  vim  apache2 libapache2-mod-passenger ruby rubygems libruby ruby-dev  libmagickc ...

  9. linux下免安装版本mysql5.5 配置

    进入/usr/local #cd /usr/local 下载 #wget http://dev.mysql.com/get/Downloads/MySQL-5.5/mysql-5.5.39-linux ...

  10. PHP调用wsdl接口实例化SoapClient抛出异常

    异常:Message:SOAP-ERROR: Parsing WSDL: Couldn't load from 'http://*****?wsdl' : failed to load externa ...