HDU 5572--An Easy Physics Problem(射线和圆的交点)
An Easy Physics Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3845 Accepted Submission(s): 768
Currently the ball stands still at point A, then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.
We're just curious about whether the ball will pass point B after some time.
Every test case contains three lines.
The first line contains three integers Ox, Oy and r, indicating the center of cylinder is (Ox,Oy) and its radius is r.
The second line contains four integers Ax, Ay, Vx and Vy, indicating the coordinate of A is (Ax,Ay) and the initial direction vector is (Vx,Vy).
The last line contains two integers Bx and By, indicating the coordinate of point B is (Bx,By).
⋅ |Ox|,|Oy|≤ 1000.
⋅ 1 ≤ r ≤ 100.
⋅ |Ax|,|Ay|,|Bx|,|By|≤ 1000.
⋅ |Vx|,|Vy|≤ 1000.
⋅ Vx≠0 or Vy≠0.
⋅ both A and B are outside of the cylinder and they are not at same position.
这里有一个小问题,如果反过来求B关于此直线的对称点在圆心->A路径上,是会WA的.
#include <iostream>
#include <cstdio>
#include <cstring>
#include<algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const double eps = 1e-;
int sgn(double x) {
if (fabs(x) < eps)return ;
if (x < )return -;
else return ;
}
struct point {
double x, y;
point() {}
point(double x, double y) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator ==(point b)const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
bool operator <(point b)const {
return sgn(x - b.x) == ? sgn(y - b.y)< : x<b.x;
}
point operator -(const point &b)const { //返回减去后的新点
return point(x - b.x, y - b.y);
}
point operator +(const point &b)const { //返回加上后的新点
return point(x + b.x, y + b.y);
}
point operator *(const double &k)const { //返回相乘后的新点
return point(x * k, y * k);
}
point operator /(const double &k)const { //返回相除后的新点
return point(x / k, y / k);
}
double operator ^(const point &b)const { //叉乘
return x*b.y - y*b.x;
}
double operator *(const point &b)const { //点乘
return x*b.x + y*b.y;
}
double len() { //返回长度
return hypot(x, y);
}
double len2() { //返回长度的平方
return x*x + y*y;
}
point trunc(double r) {
double l = len();
if (!sgn(l))return *this;
r /= l;
return point(x*r, y*r);
}
};
struct line {
point s;
point e;
line() { }
line(point _s, point _e) {
s = _s;
e = _e;
}
bool operator ==(line v) {
return (s == v.s) && (e == v.e);
}
//返回点p在直线上的投影
point lineprog(point p) {
return s + (((e - s)*((e - s)*(p - s))) / ((e - s).len2()));
}
//返回点p关于直线的对称点
point symmetrypoint(point p) {
point q = lineprog(p);
return point( * q.x - p.x, * q.y - p.y);
}
//点是否在线段上
bool pointonseg(point p) {
return sgn((p - s) ^ (e - s)) == && sgn((p - s)*(p - e)) <= ;
}
};
struct circle {//圆
double r; //半径
point p; //圆心
void input() {
p.input();
scanf("%lf", &r);
}
circle() { }
circle(point _p, double _r) {
p = _p;
r = _r;
}
circle(double x, double y, double _r) {
p = point(x, y);
r = _r;
}
//求直线和圆的交点,返回交点个数
int pointcrossline(line l, point &r1, point &r2) {
double dx = l.e.x - l.s.x, dy = l.e.y - l.s.y;
double A = dx*dx + dy*dy;
double B = * dx * (l.s.x - p.x) + * dy * (l.s.y - p.y);
double C = (l.s.x - p.x)*(l.s.x - p.x) + (l.s.y - p.y)*(l.s.y - p.y) - r*r;
double del = B*B - * A * C;
if (sgn(del) < ) return ;
int cnt = ;
double t1 = (-B - sqrt(del)) / ( * A);
double t2 = (-B + sqrt(del)) / ( * A);
if (sgn(t1) >= ) {
r1 = point(l.s.x + t1 * dx, l.s.y + t1 * dy);
cnt++;
}
if (sgn(t2) >= ) {
r2 = point(l.s.x + t2 * dx, l.s.y + t2 * dy);
cnt++;
}
return cnt;
}
};
point A, V, B;
circle tc;
point r1, r2;
int main() {
int t, d = ;
scanf("%d", &t);
while (t--) {
tc.input();
A.input();
V.input();
B.input();
int f = ;
int num = tc.pointcrossline(line(A, A + V), r1, r2);
if (num < ) {
point t = B - A;
if (t.trunc() == V.trunc()) f = ;
else f = ;
}
else {
line l = line(tc.p, r1);
line l1 = line(A, r1);
line l2 = line(r1, B);
point t = l.symmetrypoint(A);
if (l1.pointonseg(B))f = ;
else if (l2.pointonseg(t))f = ; //求B的对称点会WA
else f = ;
}
if (f == )
printf("Case #%d: Yes\n", d++);
else
printf("Case #%d: No\n", d++);
}
return ;
}
HDU 5572--An Easy Physics Problem(射线和圆的交点)的更多相关文章
- HDU 5572 An Easy Physics Problem (计算几何+对称点模板)
HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...
- hdu 5572 An Easy Physics Problem 圆+直线
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU - 5572 An Easy Physics Problem (计算几何模板)
[题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...
- 【HDU 5572 An Easy Physics Problem】计算几何基础
2015上海区域赛现场赛第5题. 题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意:在平面上,已知圆(O, R),点B.A(均在圆外),向量 ...
- HDU 5572 An Easy Physics Problem【计算几何】
计算几何的题做的真是少之又少. 之前wa以为是精度问题,后来发现是情况没有考虑全... 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意: ...
- 2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)
题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...
- ACM 2015年上海区域赛A题 HDU 5572An Easy Physics Problem
题意: 光滑平面,一个刚性小球,一个固定的刚性圆柱体 ,给定圆柱体圆心坐标,半径 ,小球起点坐标,起始运动方向(向量) ,终点坐标 ,问能否到达终点,小球运动中如果碰到圆柱体会反射. 学到了向量模板, ...
- HDU 4974 A simple water problem(贪心)
HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...
- hdu 1040 As Easy As A+B
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- base64的编码解码的一些坑
1. //编码 value = base64encode(utf16to8(src)) //解码 value = utf8to16(base64decode(src)) 这里:base64编码之前先转 ...
- Linux下OCI环境配置
ORACLE调用接口(Oracle Call Interface简称OCI)提供了一组可对ORACLE数据库进行存取的接口子例程(函数),通过在第三代程序设计语言(如C语言)中进行调用可达到存取ORA ...
- 【Web crawler】print_all_links
How to repeat Procedures&Control CS重要概念 1.1 过程procedures 封装代码,代码重用 1.2 控制Control DEMO # -*- codi ...
- Web API 2 入门——使用ASP.NET Web API和Angular.js构建单页应用程序(SPA)(谷歌翻译)
在这篇文章中 概观 演习 概要 由网络营 下载网络营训练包 在传统的Web应用程序中,客户机(浏览器)通过请求页面启动与服务器的通信.然后,服务器处理请求,并将页面的HTML发送给客户端.在与页面的后 ...
- oracle 插入大于4000字符的 clob代码
OracleConnection connection = new OracleConnection(conn); OracleCommand command = new OracleCommand( ...
- LINQ学习笔记(一)基本语法
1.LINQ简介 LINQ是Language Integrated Query的简称,它是集成在.NET编程语言中的一种特性.包括五个部分:LINQ to Objects.LINQ to DataSe ...
- Mysql学习---SQL测试题之表结构
创建表结果和数据准备[直接执行即可] /* Navicat MySQL Data Transfer Source Server : ftl1012 Source Server Version : 50 ...
- python 中的list&tuple
list Python内置的一种数据类型是列表:list>>> classmates = ['Michael', 'Bob', 'Tracy']>>> classm ...
- xalan\xalan\2.7.2\xercesImpl.jar (系统找不到指定的文件)问题
本文转自:http://blog.csdn.net/lveliu/article/details/77772828 环境搭建为:maven+tomcat tomcat 8.5.2 以上会出现改问题(包 ...
- web页面显示当前系统时间并定时刷新
function showCurrentDate(){ var today,hour,second,minute,year,month,date; var strDate ; today=new Da ...