首先要冷静下来发现这仅仅是在划分区间。显然若有相邻的数字相同应当划分在同一区间。还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数。瞬间暴力dp就变成常数极小100002了。可以继续斜率优化然而懒了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],b[N],cnt[N],p[N],pre[N];
ll f[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4709.in","r",stdin);
freopen("bzoj4709.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
int t=i;
while (t<n&&a[t+]==a[i]) t++;
m++,b[m]=a[i],cnt[m]=t-i+,pre[m]=p[a[i]],p[a[i]]=m;
i=t;
}
for (int i=;i<=m;i++)
{
int s=;
for (int j=i;j;j=pre[j])
{
s+=cnt[j];
f[i]=max(f[i],f[j-]+1ll*b[i]*s*s);
}
}
cout<<f[m];
return ;
}

BZOJ4709 JSOI2011柠檬(动态规划)的更多相关文章

  1. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  2. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  3. BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  4. [BZOJ4709][JSOI2011]柠檬(斜率优化DP)

    显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...

  5. [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp

    题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...

  6. BZOJ4709: [Jsoi2011]柠檬(决策单调性)

    题意 题目链接 Sol 结论:每次选择的区间一定满足首位元素相同.. 仔细想想其实挺显然的,如果不相同可以删掉多着的元素,对答案的贡献是相同的 那么设\(f[i]\)表示到第\(i\)个位置的最大价值 ...

  7. 【BZOJ4709】柠檬(动态规划,单调栈)

    [BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...

  8. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  9. 4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...

随机推荐

  1. Ruby数据类型

    数字类型 书写整数时,可以根据需要在整数之间任意加入下划线而不会影响数字的值 a=123_45_78 puts a # => 12345678 to_i 截掉小数点之后的数字取整 内置Math模 ...

  2. Process Monitor工具找网吧广告

    很多网吧经常有遇到有一些客户机多了一些广告或者是可能是有中毒的情况.Process Monitor 软件可以方便的监视和记录系统各程序的进程线程,注册表,网络,文件读写等活动. 1,开超级用户,双击打 ...

  3. hive自定义函数——hive streaming

    Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令.脚本语言或其他编程语言来实现Mapper和 Reducer,Streaming方式是基于 ...

  4. TraceHelper

    public class TraceHelper { private static TraceHelper _traceHelper; private TraceHelper() { } public ...

  5. hdu1789 Doing Homework again(贪心+排序)

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. Selenium(Python)页面对象+数据驱动测试框架

    整个工程的目录结构: 常用方法类: class SeleniumMethod(object): # 封装Selenium常用方法 def __init__(self, driver): self.dr ...

  7. Selenium自动化测试第一天(下)

    如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...

  8. 【SpringCloud】 第九篇: 服务链路追踪(Spring Cloud Sleuth)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  9. 编写你自己的Python模块

    其实网上Python教程挺多的,编写你自己的模块很简单,这其实就是你一直在做的事情!这是因为每一个 Python 程序同时也是一个模块.你只需要保证它以 .py 为扩展名即可.下面的案例会作出清晰的解 ...

  10. html简约风用户登录界面网页制作html5-css-jquary-学习模版

    2018--12-12 喜迎双十二,咳咳,,,,我不是打广告哈,购物的节日也不要忘记学习. 大家好,我又来了. 今天抽出来空把自己的学习心得给大家分享,这是一个可开发可扩展的用户登录界面,用于开发学习 ...