题目大意:给你$n(n\leqslant2000)$个点,要你求$n-1$次经过这$n$个点的多项式在$k$处的值

题解:$Lagrange$插值:
$$
f_x=\sum\limits_{i=1}^ky_i\prod\limits_{j=1,j\not=i}^k\dfrac{x-x_j}{x_i-x_j}
$$
卡点:

C++ Code:

#include <algorithm>
#include <cstdio>
#define maxn 2010
const int mod = 998244353;
namespace Math {
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
}
inline void reduce(int &x) { x += x >> 31 & mod; }
inline int getreduce(int x) { return x + (x >> 31 & mod); } int n, k, ans;
int x[maxn], y[maxn];
int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; ++i) scanf("%d%d", x + i, y + i);
for (int i = 1; i <= n; ++i) {
long long a = y[i], b = 1;
for (int j = 1; j <= n; ++j) if (i != j) {
a = a * getreduce(k - x[j]) % mod;
b = b * getreduce(x[i] - x[j]) % mod;
}
reduce(ans += a * Math::inv(b) % mod - mod);
}
printf("%d\n", ans);
return 0;
}

  

[洛谷P4781]【模板】拉格朗日插值的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  7. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  8. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  9. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  10. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

随机推荐

  1. P3379 【模板】最近公共祖先(LCA)

    P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...

  2. P1294 高手去散步

    P1294 高手去散步 题目背景 高手最近谈恋爱了.不过是单相思.“即使是单相思,也是完整的爱情”,高手从未放弃对它的追求.今天,这个阳光明媚的早晨,太阳从西边缓缓升起.于是它找到高手,希望在晨读开始 ...

  3. Prism MEF example

    Related Attributes These attributes are under namespace System.ComponentModel.Composition Import The ...

  4. Appium1.8及以上命令行启动

    安装命令行启动版本的Appium,appium-doctor需要独立下载了,用 npm的话需要FQ才好使,所有安装了cnpm代替npm, cnpm是从淘宝的国内镜像下载 npm config rm p ...

  5. Python里//与/的区别?

    1.Python里面//的作用是除法取整,也就是直接取整数部分 例如:5//6=0; 56//3=18 2.而/的作用是直接进行常规的除法运算 例如:56/8=7 程序运算实例如下:

  6. 了解Python控制流语句——for 循环

    for 循环 Python教程中for...in 语句是另一种循环语句,其特点是会在一系列对象上进行迭代(Iterates),意即它会遍历序列中的每一个项目.我们将在后面的Python序列(Seque ...

  7. 181. Flip Bits【LintCode, by java】

    Description Determine the number of bits required to flip if you want to convert integer n to intege ...

  8. 每周psp-第五周

    PSP表格: 类别 任务 开始时间 结束时间 中断时间 delta时间 开会 scrum立会 10.13下午6:04 10.13下午6:34 0 30 开会 scrum立会 10.14下午6:02 1 ...

  9. c++ string需要注意的地方

    There are multiple answers based on what you are doing with the string. 1) Using the string as an id ...

  10. 【IdentityServer4文档】- 欢迎来到 IdentityServer4

    欢迎来到 IdentityServer4 IdentityServer4 是一款包含和实现了 OpenID Connect 和 OAuth 2.0 协议的,适用于 ASP.NET Core 的框架 . ...