mysql分表技术
一般来说,当我们的数据库的数据超过了100w记录的时候就应该考虑分表或者分区了,这次我来详细说说分表的一些方法。
目前我所知道的方法都是MYISAM的,INNODB如何做分表并且保留事务和外键,我还不是很了解。
首先,我们需要想好到底分多少个表,前提当然是满足应用。
这里我使用了一个比较简单的分表方法,就是根据自增id的尾数来分,也就是说分0-9一共 10个表,其取值也很好做,就是对10进行取模。
另外,还可以根据某一字段的md5值取其中几位进行分表,这样的话,可以分的表就很多了。
我一共建立10个表:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAf8AAAJACAIAAAAM5/jUAAAgAElEQVR4nO2cUZLruK5sNd07qzcUDe197NMOlUgkExQl0eZaHx0yDSYSkIhy7HbV9v/+3//7v//7vw0AAJaC6Q8AsCJMfwCAFWH6AwCsCNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRf5N/33f933/LJ5edmAq7H+J1k0zUXxKRCvrgG79U5ax9+IHEP3PPiTDLWljT1oCyHGc/v8e1iFnKTuyyy3Hl6ZaNSzSz/LA9I+kZpsjAytNBT/T/w4z898ygAqn6a8/ztxBNOWHT/+BPm/l1iqu81Y/p53+5XmZ52YBKJrTv/rz4LgSvbXXPg1F6/61oBoW7dV1af/X6xUVacPVLX5dpU7K517g1xWJd/gpU5j+TUtmcHWXnxHgZU7/7r/XBsQ/qqd0+ztZomBHp3rdcYDLlVJEJ035jFZSuTqkUrm24H51+KmGOTpXammmSAVfNLb9bebFdACv0fy/vvtfTjHl018qODr+taAaJhZLPyKp9mPW6xSVXTdjjk5OF6XPyH+UQuhkrTp5y73avO/HjD9Fam8Ak6Knv3is9VPuH93orY4TVQ3zF/t8poKdolKG/bA7+pC1l/Izqv9ZM87e/T+GZAd4h3mmf+q0O0nNRee66ccMdopqiguy9+tKH7J1Ramf7H/TTEe84wdgRvx/+dmKE1t9xPcCU6c0ILJUEUm1T1H46dq3Wq33oqW+JnQkFf6rTdApmlabeU8XUWnHt7J+RL06PgpOtQLgBfhdX4CI8kcLMx1+B6Y/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsCNMfAGBFXp/+fV+h01+y9r+sPcrVOl8EjL74+MwXIifpM1/9hF/g9em/jfs7ASm1F6f/3VPjgamkf/o+n/d55nEC0MkM038bepaGTP/7+I35+Nb0n4d1KoWfZZLpvyWndhm8/yWlc4xv6p+sNkXEetOnCL5VvyywujES1EmPYafUx5eitMi/Hx/p+1VE8dW8HfoAt/PM9C9PafXp90/FxaPb3JLV9+NTJ1+PmFf0dZa+O1i93v9D6B+DTauRfrPkSLbjvqTuEcBdfN1n/2pwx9HSW7L6fnx3mR1T5g59ncXPrtPtwTSPii3j97+ctkTxfhVaPHrL1we4nUmmf/Y8XD9aektW349PVeqMp4f1dRY/eypdpP95+fnv6UJsMf00nZgbs/oAtzPD9O84DOJIm2p6S7TyodtPdWpkTb6oLxbNpB3pIv1jsVtQu7g1VXGzhGoKXUik7ycFGMnr0z/73O8Fp3VH8xRZTgcxCJx4cwqYxTbzVneN0q+GldmbfYtMRiI6vjQW+dxqt1vYS5kXeSOR8i2zYwCDeX36fwXRUYdu5mzj3a6i0X9fRoAQpr+J87ERTGZr5t1+ZqsXYNuY/gAAa8L0BwBYEaY/AMCKMP0BAFaE6Q8AsCKvT/9bvwgx2xct7vBzEoy+XrL/Jdr+dTj1vuMMYHJen/7bIz8AbhLvYKwfMcqj6+bL4TzQ/6iE2e4+wETMMP23O0/pbOd/oJ/oA69zLTaO5Zn+M/0B0kwy/bfk3+cxP/Nu8b94ND0InXLRjD+GDdHP1iJa4fdH1CWKuqJfrcUx7yQFWJTv+vv+0RQQ06E5OBx9YfLz8lhX008ZltJv1iJEzLxN2Y7+N+nQ11lS2QHW4ks/+4tFMX2aKZo6H8r1rZjUqRQpfT9FKR7tbTanab6q48he0ddZUtkB1mKS6Z89pWLE+G9p2SvTTSSqSvVNTz/1/h9RjNn/Uf0ZqK+zpLIDrMUM098/ohenj5NoP+CINIeRI9U9PU2fWvOZ/vvNT+nrEkSwWTLAz/L69M+ew/1AdX2rTZzUgW+OjFJWxO/FKBRDzdevut0Lqn7K9UZH4ly63mrVF/WrYWV2pxVWzQC/yuvTH+BJmPsA/4PpDwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK8L0BwBYkdenP9/Am5Po+/t6/RlXd2fxectP6lcWhvx+Q3Tfh/Dbv4GROkeP8vr036Y80lPpvKW/df0O7St+3uJFP2bqT9gQq9F9vygbKT/Dree92v/o+mlmmP7bTKd6lJO7K3qmY6npL9ZhONnpf1PSbzkvd+dNnQg9/ff/uO6qwSTTf0s+zaJlx/X9LylxIRV5/rwUOk7ebF3d+seXVZ1IXCT1+6brrdrr0BHrp0QiRXTdl1eb0WifUV6t0yw2Urvov6rs1HVcSfXB91996xhTXgudqAnVgKr/W/jtv+8fXZspmnm31lPbTNft/259nUVkH3WPHD/dOpHsXtxKLWX6ibaIvNpn6vpDt2Y1WJeZynW0aqY+BZcbzbrG+q/GV/sfrT/Kd332j2I67noqxV5Qfdex2kxq+r9bX2cR2UvNsm+j/Oi9Zd7oreNFypKzUs17Ci7zVumuN+sn2ujX2/TfV1rp37d9pT/NRFonWiz9PMok099sgdNi5zqbQu+t3sLUTe3wf7e+zmKuD79fQr/jXpc6n/+ash19qF6XebXPpjHtcFT/Hc9mcNSWyI/O6wd3+zdTpPp/XPFd9TPD9PdLzT61zadZpDB1qvFifUhdD+iLRT+4u64POkV3XZFstaX3+dF5hU+/3qbtVN/KxWMJfp+1z6rmTXUN93/F53GlaWYAr0//bJ37gea67nIzRUo/eukkbT5V4hkapV8NK7Pr9Si1aJTeWNURhnXeCGEv5Ufkrdp28lZtROX7TWjqCP0oi3bu+Cz7UPXj1LUH/det8P1v8SORSlrN6/u5xOvTH+BDNAJeZyoz8Ns897Ax/WEq9Geilc0ADIbpDwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK3Kc/rN9vUF8f/b48qL4VCWnaH6VeB5LzS2lQkpHNOHhPnzv4wTL8Zn+n6d2ksc38jNk+gvNb6HZn+tFDeltKrjvvpRhQx6Sbr7xcYIV+Tf9Z5uGzsS/YrIU/LrjGnkeVUu3jr/Rmdpaaj+gdRw/A/nGJwqWQ09/cYqqB++4EmmWb5U4e68csJOIP2Uib8Jw1b9vPoqPFPR6pCOKcuott5h1RYvXpcx3T2FmfxyHZl6A1+ib/tF1udfZUhJpbvnpqfXLMp0tqf6Ue6sxvuftbxPKRNG6fx3Z69BxyikXy3ZlpbrNXLnuSA3wGuX0P84O/cQf+Qj624Wrqubp+srpOjl3pKrxzQJ1WNZq1JMyXos4Zrp1zAKb+hel/O2mn2yNqewAL3Ca/uL4XZka/vZqQHXvldM16jA3+xNZNc0Lk06f+4Iv6vj3JWpLViplNSXV0bcr2QEe5fSdH3H8nOvy5ZFSX/AJE/rVtzrmhbOrOWIiTbNvzaSm55TPUf6zdUVunZe6uj4/V2rU2QHmpfxtL3Hkyoc+ChZPv382hH7Tqi/uT4dqZPRWtWlaSqcuNaOkHT71lpROWbJTYFVfpKgG77WH0zST7Y9eb6YDeJ/T9E8dmA6+URkA4Ad55i893P1DBQAAcvB3fgAAVoTpDwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK8L0BwBYEaY/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsCNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRf5N/33f933/LJ5edmAq7H+J1k0zUXxKRCvrgG79U5ax9+IHEP3PPiRjufuRALiR4/T/97AOOUvZkV1uOb401aphkX6WB6Z/JDXbHBlYaSp4tlErks52ywAqnKb/85+koik/fPoP9Hkrt1Zxnbf6OdX018dknpsFoGhO/+qDflyJ3tprH2Cjdf9aUA3TR1SYF/6v1ysq0oarW/y6Sp2Uz73ArysS7/BTpjD9m5ac+GrSaBFgRk7/7r/XBsQ/qqd0+ztZomBHp3rdcYDLlVJEJ035jFZSuTqkUrm24H51+KmGOTpXammmSAVfNKYjs+kAXqP5f333v5xiyiFSKjg6/rXAP417QTOp9mPW6xSVXTdjjk5OF6XPyH+UQuhkrTp5y73avO/Hj49K8LcDvIye/uLI6afcP7rRW/q0O0mzi30+U8FOUSnDftgdfcjaS/kZ1f+sGX9v6g4CTMc80z912p2k5qJz3fRjBjtFNcUF2ft1pQ/ZuqLUT/a/acb3ryN9EYDX8P/lZytObPUR3wtMndKAyFJFJNU+ReGna99qtd6Llvqa0JFU+K82QadoWm3mPV1EpR3fyvoR9YpgkSLVCoAX4Hd9ASLKKc9Mh9+B6Q8AsCJMfwCAFWH6AwCsCNMfAGBFmP4AACvC9AcAWJHXp3/fV+j0l6ybgs2wrKt1vggYffHxmS9ETtJnvvoJv8Dr038b93cCUmovTv+7p8YDU0n/9H0+7/PM4wSgkxmm/zb0LA2Z/vfxG/Pxrek/D+tUCj/LJNN/S07tMnj/S0rnGN/UP1ltioj1pk8RfKt+WWB1YySokx7DTqmPL0VpkX8/PtL3q4jiq3k79AFu55npX57S6tPvn4qLR7e5Javvx6dOvh4xr+jrLH13sHq9/4fQPwabViP9ZsmRbMd9Sd0jgLv4us/+1eCOo6W3ZPX9+O4yO6bMHfo6i59dp9uDaR4VW8bvfzltieL9KrR49JavD3A7k0z/7Hm4frT0lqy+H5+q1BlPD+vrLH72VLpI//Py89/Thdhi+mk6MTdm9QFuZ4bp33EYxJE21fSWaOVDt5/q1MiafFFfLJpJO9JF+sdit6B2cWuq4mYJ1RS6kEjfTwowktenf/a53wtO647mKbKcDmIQOPHmFDCLbeat7hqlXw0rszf7FpmMRHR8aSzyudVut7CXMi/yRiLlW2bHAAbz+vT/CqKjDt3M2ca7XUWj/76MACFMfxPnYyOYzNbMu/3MVi/AtjH9AQDWhOkPALAiTH8AgBVh+gMArAjTHwBgRV6f/rd+EWK2L1rc4eckGH29ZP9LtP3rcOp9xxnA5Lw+/bdHfgDcJN7BWD9ilEfXzZfDeaD/UQmz3X2AiZhh+m93ntLZzv9AP9EHXudabBzLM/1n+gOkmWT6b8m/z2N+5t3if/FoehA65aIZfwwbop+tRbTC74+oSxR1Rb9ai2PeSQqwKN/19/2jKSCmQ3NwOPrC5Oflsa6mnzIspd+sRYiYeZuyHf1v0qGvs6SyA6zFl372F4ti+jRTNHU+lOtbMalTKVL6fopSPNrbbE7TfFXHkb2ir7OksgOsxSTTP3tKxYjx39KyV6abSFSV6puefur9P6IYs/+j+jNQX2dJZQdYixmmv39EL04fJ9F+wBFpDiNHqnt6mj615jP995uf0tcliGCzZICf5fXpnz2H+4Hq+labOKkD3xwZpayI34tRKIaar191uxdU/ZTrjY7EuXS91aov6lfDyuxOK6yaAX6V16c/wJMw9wH+B9MfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAir09/voE3J9H39/X6M67uzuLzlp/UrywM+f2G6L4P4bd/AyN1jh7l9em/TXmkp9J5S3/r+h3aV/y8xYt+zNSfsCFWo/t+UTZSfoZbz3u1/9H108ww/beZTvUoJ3dX9EzHUtNfrMNwstP/pqTfcl7uzps6EXr67/9x3VWDSab/lnyaRcuO6/tfUuJCKvL8eSl0nLzZurr1jy+rOpG4SOr3TddbtdehI9ZPiUSK6Lovrzaj0T6jvFqnWWykdtF/Vdmp67iS6oPvv/rWMaa8FjpRE6oBVf+38Nt/3z+6NlM0826tp7aZrtv/3fo6i8g+6h45frp1Itm9uJVayvQTbRF5tc/U9YduzWqwLjOV62jVTH0KLjeadY31X42v9j9af5Tv+uwfxXTc9VSKvaD6rmO1mdT0f7e+ziKyl5pl30b50XvLvNFbx4uUJWelmvcUXOat0l1v1k+00a+36b+vtNK/b/tKf5qJtE60WPp5lEmmv9kCp8XOdTaF3lu9hamb2uH/bn2dxVwffr+Efse9LnU+/zVlO/pQvS7zap9NY9rhqP47ns3gqC2RH53XD+72b6ZI9f+44rvqZ4bp75eafWqbT7NIYepU48X6kLoe0BeLfnB3XR90iu66ItlqS+/zo/MKn369TdupvpWLxxL8PmufVc2b6hru/4rP40rTzABen/7ZOvcDzXXd5WaKlH700knafKrEMzRKvxpWZtfrUWrRKL2xqiMM67wRwl7Kj8hbte3krdqIyveb0NQR+lEW7dzxWfah6sepaw/6r1vh+9/iRyKVtJrX93OJ16c/wIdoBLzOVGbgt3nuYWP6w1Toz0QrmwEYDNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBW5Dj9Z/t6g/j+7PHlRfGpSk7R/CrxPJaaW0oFU6cZ/3ArvvdxguX4TP/PUzvJ4xv5GTL9hea30OzP9aKG9DYVnL0vzXj/p8hAvvFxghX5N/1nm4bOxL9ishT8uuMaeR5VS7eOvzEa1sdrf/qX8fsB0/wovvGJguXQ0786do8vo8UovipV4uy9csBOIqYfUZcwXPXvm4/iIwW9HumIopx6yy1mXdGiKSXiT2+Zfsz+OA7NvACv0Tf9o+tyr7OlJNLc8tNT6/sDolpXX0+qMb7n7W8TykTRun8d2evQccopF8t2aZFTfNZPti5H3+wDwGuU03//j631xB/5CPrbhauq5un6yuk6OXekqvHNAnVY1mrUkzJeizhmunXMApv6jlQUX/psWhrVNy0IMBGn6S+On/n0R2+lDs8poLr3yukadZib/YmsmuaFSafPfcEXdfz7ErXFl3LifT9lcEffOpICvMPpOz/iODnX5csjpb7gEyb0q2+lxJuedYzTB7NvzaSm55TPUf6zdUVunZd+vO/nSo2lfqoDAK9R/raXOHLlQx8Fi6ffPxtCv2nVF/enQzUyeqvaNC2lU5eaUdIOn3pLSqcs2Smwqi9SOPG6OjOyb13nApiC0/T3T0sf36gMAPCDPPOXHu7+oQIAADn4Oz8AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRZj+AAArwvQHAFgRpj8AwIow/QEAVoTpDwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK8L0BwBYEaY/AMCKMP0BAFaE6Q8AsCL/pv++7/u+fxZPLzswFfa/ROummSg+JaKVdUC3/inL2HvxA4j+Zx+S4ZaivNw4mJ3j9P/3sA45S9mRXW45vjTVqmGRfpYHpn8kNdscGVhpKviZ/mfN6KcOYF5O07/5iWY40UEaPv0H+ryVyafJW/38ouk/z80CUDSnf/XnwXEleqt6JPRRca4F1bBor65L+79er6hIG65u8esqdVI+9wK/rki8w0+ZwvRvWnLio9QdCgDvcPp3/702IP4RPeXirFYzitNSXncc4HKlFNFJUz6jlVSuDqlUri24Xx1+qmGOzpVamilSwReN6eBsOoDXaP5f3/0vp5hyiJQKjo5/LaiGicXSj0iq/Zj1OkVl182Yo5PTRekz8h+lEDpZq07ecq827/vx46MS/O0AL6Onvzhy+in3j270lj7tTtLsYp/PVLBTVMqwH3ZHH7L2Un5G9T9r5qZWA0zHPNM/ddqdpOaic930YwY7RTXFBdn7daUP2bqi1E/2v2lmVLx/ywBew/+Xn604seK5LwOaOqUBkaWKSKp9isJP177Var0XLfU1oSOp8F9tgk7RtNrMe7qISju+lfUj6hXBIkWqFQAvwO/6AkSUU56ZDr8D0x8AYEWY/gAAK8L0BwBYEaY/AMCKMP0BAFaE6Q8AsCKvT/++r9DpL1k3BZthWVfrfBEw+uLjM1+InKTPfPUTfoHXp/827u8EpNRenP53T40HppL+6ft83ueZxwlAJzNM/23oWRoy/e/jN+bjW9N/HtapFH6WSab/lpzaZfD+l5TOMb6pf7LaFBHrTZ8i+Fb9ssDqxkhQJz2GnVIfX4rSIv9+fKTvVxHFV/N26APczjPTvzyl1affPxUXj25zS1bfj0+dfD1iXtHXWfruYPV6/w+hfww2rUb6zZIj2Y77krpHAHfxdZ/9q8EdR0tvyer78d1ldkyZO/R1Fj+7TrcH0zwqtozf/3LaEsX7VWjx6C1fH+B2Jpn+2fNw/WjpLVl9Pz5VqTOeHtbXWfzsqXSR/ufl57+nC7HF9NN0Ym7M6gPczgzTv+MwiCNtqukt0cqHbj/VqZE1+aK+WDSTdqSL9I/FbkHt4tZUxc0Sqil0IZG+nxRgJK9P/+xzvxec1h3NU2Q5HcQgcOLNKWAW28xb3TVKvxpWZm/2LTIZiej40ljkc6vdbmEvZV7kjUTKt8yOAQzm9en/FURHHbqZs413u4pG/30ZAUKY/ibOx0Ywma2Zd/uZrV6AbWP6AwCsCdMfAGBFmP4AACvC9AcAWBGmPwDAirw+/W/9IsRsX7S4w89JMPp6yf6XaPvX4dT7jjOAyXl9+m+P/AC4SbyDsX7EKI+umy+H80D/oxJmu/sAEzHD9N/uPKWznf+BfqIPvM612DiWZ/rP9AdIM8n035J/n8f8zLvF/+LR9CB0ykUz/hg2RD9bi2iF3x9Rlyjqin61Fse8kxRgUb7r7/tHU0BMh+bgcPSFyc/LY11NP2VYSr9ZixAx8zZlO/rfpENfZ0llB1iLL/3sLxbF9GmmaOp8KNe3YlKnUqT0/RSleLS32Zym+aqOI3tFX2dJZQdYi0mmf/aUihHjv6Vlr0w3kagq1Tc9/dT7f0QxZv9H9Wegvs6Syg6wFjNMf/+IXpw+TqL9gCPSHEaOVPf0NH1qzWf67zc/pa9LEMFmyQA/y+vTP3sO9wPV9a02cVIHvjkySlkRvxejUAw1X7/qdi+o+inXGx2Jc+l6q1Vf1K+GldmdVlg1A/wqr09/gCdh7gP8D6Y/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsCNMfAGBFXp/+fANvTqLv7+v1Z1zdncXnLT+pX1kY8vsN0X0fwm//BkbqHD3K69N/m/JIT6Xzlv7W9Tu0r/h5ixf9mKk/YUOsRvf9omyk/Ay3nvdq/6Prp5lh+m8znepRTu6u6JmOpaa/WIfhZKf/TUm/5bzcnTd1IvT03//juqsGk0z/Lfk0i5Yd1/e/pMSFVOT581LoOHmzdXXrH19WdSJxkdTvm663aq9DR6yfEokU0XVfXm1Go31GebVOs9hI7aL/qrJT13El1Qfff/WtY0x5LXSiJlQDqv5v4bf/vn90baZo5t1aT20zXbf/u/V1FpF91D1y/HTrRLJ7cSu1lOkn2iLyap+p6w/dmtVgXWYq19GqmfoUXG406xrrvxpf7X+0/ijf9dk/ium466kUe0H1XcdqM6np/259nUVkLzXLvo3yo/eWeaO3jhcpS85KNe8puMxbpbverJ9oo19v039faaV/3/aV/jQTaZ1osfTzKJNMf7MFToud62wKvbd6C1M3tcP/3fo6i7k+/H4J/Y57Xep8/mvKdvShel3m1T6bxrTDUf13PJvBUVsiPzqvH9zt30yR6v9xxXfVzwzT3y81+9Q2n2aRwtSpxov1IXU9oC8W/eDuuj7oFN11RbLVlt7nR+cVPv16m7ZTfSsXjyX4fdY+q5o31TXc/xWfx5WmmQG8Pv2zde4Hmuu6y80UKf3opZO0+VSJZ2iUfjWszK7Xo9SiUXpjVUcY1nkjhL2UH5G3atvJW7URle83oakj9KMs2rnjs+xD1Y9T1x70X7fC97/Fj0QqaTWv7+cSr09/gA/RCHidqczAb/Pcw8b0h6nQn4lWNgMwGKY/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsyHH6z/b1BvH92ePLi+JTlZyi+VXieSw1t5QKKR3RhIdb8b2PEyzHZ/p/ntpJHt/Iz5DpLzS/hWZ/rhc1pLep4L77Uoa9e3+/8XGCFfk3/Webhs7Ev2KyFPy64xp5HlVLt46/UU9t577sB67oDOcbnyhYDj39q2P3+DJajOKrUiXO3isH7CTiT5nImzBc9e+bj+IjBb0e6YiinHrLLWZd0eJFqQ6dVH8cZdM8wGv0Tf/outzrbCmJNLf89NT6ZZnOllR/yr3VGN/z9rcJZaJo3b+O7HXoOOWUi2W7UlJZnWxdTr2meYDXKKf/cXboJ/7IR9DfLlxVNU/XV07XybkjVY1vFqjDslajnpTxWsQx061jFtjUvyLVoTOqb1oQYCJO018cG/Ppj95KHZ5TQHXvldM16jA3+xNZNc0Lk06f+4Iv6vj3JWpLVmqUThnZ0bdsRoDXOH3nRxwb57p8eaTUF3zChH71rY554eyqxjh9MPvWTGp6Tvkc5T9bV+TWeamrc3S0jev1pjoA8Brlb3uJI1c+9FGwePr9syH0m1Z9cWeLiIzeqjZNS+nUpWaUtMOn3pLSKUt2CqzqixTVYFNH2Oiot7reTAfwPqfpnzowHXyjMgDAD/LMX3q4+4cKAADk4O/8AACsCNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRZj+AAArwvQHAFgRpj8AwIow/QEAVoTpDwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK8L0BwBYEaY/AMCK/Jv++77v+/5ZPL3swFTY/xKtm2ai+JSIVtYB3fqnLGPvxQ8g+p99SIZbivJy42B2jtP/38M65CxlR3a55fjSVKuGRfpZHpj+kdRsc2RgpangZ/qfNaOfOoB5OU3/5iea4UQHafj0H+jzViafJm/1c6rpr1PPc7MAFM3pX/15cFyJ3qoeCX1UnGtBam7qurT/6/WKirTh6ha/rlIn5XMv8OuKxDv8lClM/6YlJz5K3aEA8A6nf/ffawPiH9FTLs5qNaM4LeV1xwEuV0oRnTTlM1pJ5eqQSuXagvvV4aca5uhcqaWZIhV80dgpUjsBmJfm//Xd/0u702QAAB1LSURBVHKKKYdIqeDo+NeCaphYLP2IpNqPWa9TVHbdjDk6OV2UPiP/UQqhk7Xq5C33avO+Hz9ep/a3A7yGnv7iyOmn3D+60Vv6tDtJs4t9PlPBTlEpw37YHX3I2kv5GdX/rJkre/sUAN5hnumfOu1OUnPRuW76MYOdopriguz9utKHbF1R6if73zQzKt6/ZQCv4f/Lz1acWPHclwFNndKAyFJFJNU+ReGna99qtd6Llvqa0JFU+K82QadoWm3mPV1EpR3fyvoR9er4KDLVCoAX4Hd9ASLKHy3MdPgdmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBV5ffr3fYUu2mV+J68ZlnW1zhcBoy8+PvOFyEn6zFc/4Rd4ffpv4/5OQErtxel/99R4YCrpn77P532eeZwAdDLD9N+GnqUh0/8+fmM+vjX952GdSuFnmWT6b8mpXQbvf0npHOOb+ierTRGx3vQpgm/VLwusbowEddJj2Cn18aUoLfLvx0f6fhVRfDVvhz7A7Twz/ctTWn36/VNx8eg2t2T1/fjUydcj5hV9naXvDlav9/8Q+sdg02qk3yw5ku24L6l7BHAXX/fZvxrccbT0lqy+H99dZseUuUNfZ/Gz63R7MM2jYsv4/S+nLVG8X4UWj97y9QFuZ5Lpnz0P14+W3pLV9+NTlTrj6WF9ncXPnkoX6X9efv57uhBbTD9NJ+bGrD7A7cww/TsOgzjSppreEq186PZTnRpZky/qi0UzaUe6SP9Y7BbULm5NVdwsoZpCFxLp+0kBRvL69M8+93vBad3RPEWW00EMAifenAJmsc281V2j9KthZfZm3yKTkYiOL41FPrfa7Rb2UuZF3kikfMvsGMBgXp/+X0F01KGbOdt4t6to9N+XESCE6W/ifGwEk9maebef2eoF2DamPwDAmjD9AQBWhOkPALAiTH8AgBVh+gMArMjr0//WL0LM9kWLO/ycBKOvl+x/ibZ/HU697zgDmJzXp//2yA+Am8Q7GOtHjPLouvlyOA/0PyphtrsPMBEzTP/tzlM62/kf6Cf6wOtci41jeab/TH+ANJNM/y3593nMz7xb/C8eTQ9Cp1w0449hQ/SztYhW+P0RdYmiruhXa3HMO0kBFuW7/r5/NAXEdGgODkdfmPy8PNbV9FOGpfSbtQgRM29TtqP/TTr0dZZUdoC1+NLP/mJRTJ9miqbOh3J9KyZ1KkVK309Rikd7m81pmq/qOLJX9HWWVHaAtZhk+mdPqRgx/lta9sp0E4mqUn3T00+9/0cUY/Z/VH8G6ussqewAazHD9PeP6MXp4yTaDzgizWHkSHVPT9On1nym/37zU/q6BBFslgzws7w+/bPncD9QXd9qEyd14Jsjo5QV8XsxCsVQ8/WrbveCqp9yvdGROJeut1r1Rf1qWJndaYVVM8Cv8vr0B3gS5j7A/2D6AwCsCNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBW5PXpzzfw5iT6/r5ef8bV3Vl83vKT+pWFIb/fEN33Ifz2b2CkztGjvD79tymP9FQ6b+lvXb9D+4qft3jRj5n6EzbEanTfL8pGys9w63mv9j+6fpoZpv8206ke5eTuip7pWGr6i3UYTnb635T0W87L3XlTJ0JP//0/rrtqMMn035JPs2jZcX3/S0pcSEWePy+FjpM3W1e3/vFlVScSF0n9vul6q/Y6dMT6KZFIEV335dVmNNpnlFfrNIuN1C76ryo7dR1XUn3w/VffOsaU10InakI1oOr/Fn777/tH12aKZt6t9dQ203X7v1tfZxHZR90jx0+3TiS7F7dSS5l+oi0ir/aZuv7QrVkN1mWmch2tmqlPweVGs66x/qvx1f5H64/yXZ/9o5iOu55KsRdU33WsNpOa/u/W11lE9lKz7NsoP3pvmTd663iRsuSsVPOegsu8VbrrzfqJNvr1Nv33lVb6921f6U8zkdaJFks/jzLJ9Ddb4LTYuc6m0HurtzB1Uzv8362vs5jrw++X0O+416XO57+mbEcfqtdlXu2zaUw7HNV/x7MZHLUl8qPz+sHd/s0Uqf4fV3xX/cww/f1Ss09t82kWKUydarxYH1LXA/pi0Q/uruuDTtFdVyRbbel9fnRe4dOvt2k71bdy8ViC32fts6p5U13D/V/xeVxpmhnA69M/W+d+oLmuu9xMkdKPXjpJm0+VeIZG6VfDyux6PUotGqU3VnWEYZ03QthL+RF5q7advFUbUfl+E5o6Qj/Kop07Pss+VP04de1B/3UrfP9b/Eikklbz+n4u8fr0B/gQjYDXmcoM/DbPPWxMf5gK/ZloZTMAg2H6AwCsCNMfAGBFmP4AACvC9AcAWBGmPwDAihyn/2xfbxDfnz2+vCg+Vckpml8lnsdSc0upkNIRTXi4D9/7OMFyfKb/56md5PGN/AyZ/kLzW2j253pRQ3qbCu67L2XYkIekm298nGBF/k3/2aahM/GvmCwFv+64Rp5H1dKt4290praW2g9c9zOQb3yiYDn09BefoaoH77gSaZZvlTh7rxywk4g/ZSJvwnDVv28+io8U9HqkI4py6i23mHVFi9elzHdPYWZ/HIdmXoDX6Jv+0XW519lSEmlu+emp9csynS2p/pR7qzG+5+1vE8pE0bp/Hdnr0HHKKRfLdmWltr93yle4cu24ApiFcvofz4x+4o98BP3twlVV83R95XSdnDtS1fhmgTosazXqSRmvRRwz3TpmgU39i1Lmu76fbI1mXoDXOE1/cfyuTA1/ezWguvfK6Rp1mJv9iaya5oVJp899wRd1/PsStSUrpcNSz8mVJncnBXiH03d+xPFzrsuXR0p9wSdM6Fff6pgXzq5qjNMHs2/NpKbnlM9R/rN1RW6dl7q6Pj9XatTZAeal/G0vceTKhz4KFk+/fzaEftOqL+5Ph2pk9Fa1aVpKpy41o6QdPvWWlE5ZslNgVV+kqAZHb/k2OuqtrjsZAV7mNP2zZybLNyoDAPwgz/ylh7t/qAAAQA7+zg8AwIow/QEAVoTpDwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK8L0BwBYEaY/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsCNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBVh+gMArMi/6b/v+77vn8XTyw5Mhf0v0bppJopPiWhlHdCtf8oy9l78AKL/2YdkONrY024AfI7T/9/DOuQsZUd2ueX40lSrhkX6WR6Y/pHUbHNkYKWp4Gf6nyI6LLPdMoAKp+l/5BkD0ZQfPv0H+ryVyafJW/2ccPpHh2WemwWgaE7/6iN+XIneqh4JfVSca0E1LNqr69L+r9crKtKGq1v8ukqdlM+9wK8rEu/wU6Yw/ZuW/Pgyta8A8DKnf/evPtD/iJ5ycVarGcVpKa/7DuRppRTRSVM+o5VUrg6pVK4tuF8dfqphjs6VWpopUsEXjWn9bDqA12j+X9/9L6eYcoiUCo6Ofy2ohonF0o95qrvrdYrKrpsxRyeni9Jn5D9KIXSyVp285V5t3vdjxpf6whvApOjpLx5r/ZT7Rzd6q+NEVcP8xT6fqWCnqJRhP+yOPmTtpfyM6n/WzJW9fQoA7zDP9E+ddiepuehcN/2YwU5RTXFB9n5d6UO2rij1k/1vmvH9R6n7RABewP+Xn604seK5LwOaOqUBkaWKSKp9isJP177Var0XLfU1oSOp8F9tgk7RtNrMe7qISju+lfUj6nV2lfGpVgC8AL/rCxBR/mhhpsPvwPQHAFgRpj8AwIow/QEAVoTpDwCwIkx/AIAVYfoDAKzI69O/7yt00S7zO3nNsKyrdb4IGH3x8ZkvRE7SZ776Cb/A69N/G/d3AlJqL07/u6fGA1NJ//R9Pu/zzOMEoJMZpv829CwNmf738Rvz8a3pPw/rVAo/yyTTf0tO7TJ4/0tK5xjf1D9ZbYqI9aZPEXyrfllgdWMkqJMew06pjy9FaZF/Pz7S96uI4qt5O/QBbueZ6V+e0urT75+Ki0e3uSWr78enTr4eMa/o6yx9d7B6vf+H0D8Gm1Yj/WbJkWzHfUndI4C7+LrP/tXgjqOlt2T1/fjuMjumzB36OoufXafbg2keFVvG7385bYni/Sq0ePSWrw9wO5NM/+x5uH609Jasvh+fqtQZTw/r6yx+9lS6SP/z8vPf04XYYvppOjE3ZvUBbmeG6d9xGMSRNtX0lmjlQ7ef6tTImnxRXyyaSTvSRfrHYregdnFrquJmCdUUupBI308KMJLXp3/2ud8LTuuO5imynA5iEDjx5hQwi23mre4apV8NK7M3+xaZjER0fGks8rnVbrewlzIv8kYi5VtmxwAG8/r0/wqiow7dzNnGu11Fo/++jAAhTH8T52MjmMzWzLv9zFYvwLYx/QEA1oTpDwCwIkx/AIAVYfoDAKwI0x8AYEVen/63fhFiti9a3OHnJBh9vWT/S7T963DqfccZwOS8Pv23R34A3CTewVg/YpRH182Xw3mg/1EJs919gImYYfpvd57S2c7/QD/RB17nWmwcyzP9Z/oDpJlk+m/Jv89jfubd4n/xaHoQOuWiGX8MG6KfrUW0wu+PqEsUdUW/Wotj3kkKsCjf9ff9oykgpkNzcDj6wuTn5bGupp8yLKXfrEWImHmbsh39b9Khr7OksgOsxZd+9heLYvo0UzR1PpTrWzGpUylS+n6KUjza22xO03xVx5G9oq+zpLIDrMUk0z97SsWI8d/Sslemm0hUleqbnn7q/T+iGLP/o/ozUF9nSWUHWIsZpr9/RC9OHyfRfsARaQ4jR6p7epo+teYz/febn9LXJYhgs2SAn+X16Z89h/uB6vpWmzipA98cGaWsiN+LUSiGmq9fdbsXVP2U642OxLl0vdWqL+pXw8rsTiusmgF+ldenP8CTMPcB/gfTHwBgRZj+AAArwvQHAFgRpj8AwIow/QEAVoTpDwCwIq9Pf76BNyfR9/f1+jOu7s7i85af1K8sDPn9hui+D+G3fwMjdY4e5fXpv015pKfSeUt/6/od2lf8vMWLfszUn7AhVqP7flE2Un6GW897tf/R9dPMMP23mU71KCd3V/RMx1LTX6zDcLLT/6ak33Je7s6bOhF6+u//cd1Vg0mm/5Z8mkXLjuv7X1LiQiry/HkpdJy82bq69Y8vqzqRuEjq903XW7XXoSPWT4lEiui6L682o9E+o7xap1lspHbRf1XZqeu4kuqD77/61jGmvBY6UROqAVX/t/Dbf98/ujZTNPNurae2ma7b/936OovIPuoeOX66dSLZvbiVWsr0E20RebXP1PWHbs1qsC4zleto1Ux9Ci43mnWN9V+Nr/Y/Wn+U7/rsH8V03PVUir2g+q5jtZnU9H+3vs4ispeaZd9G+dF7y7zRW8eLlCVnpZr3FFzmrdJdb9ZPtNGvt+m/r7TSv2/7Sn+aibROtFj6eZRJpr/ZAqfFznU2hd5bvYWpm9rh/259ncVcH36/hH7HvS51Pv81ZTv6UL0u82qfTWPa4aj+O57N4KgtkR+d1w/u9m+mSPX/uOK76meG6e+Xmn1qm0+zSGHqVOPF+pC6HtAXi35wd10fdIruuiLZakvv86PzCp9+vU3bqb6Vi8cS/D5rn1XNm+oa7v+Kz+NK08wAXp/+2Tr3A8113eVmipR+9NJJ2nyqxDM0Sr8aVmbX61Fq0Si9saojDOu8EcJeyo/IW7Xt5K3aiMr3m9DUEfpRFu3c8Vn2oerHqWsP+q9b4fvf4kcilbSa1/dzidenP8CHaAS8zlRm4Ld57mFj+sNU6M9EK5sBGAzTHwBgRZj+AAArwvQHAFgRpj8AwIow/QEAVuQ4/Wf7eoP4/uzx5UXxqUpO0fwq8TyWmltKBVMnin/r5n7v4wTL8Zn+n6d2ksc38jNk+gvNb6HZn+tFDeltKjh7X5za+QEAUOff9J9tGjoT/4rJUvDrjmvkeVQt3Tr+xjIye1+c+Fdu7jc+UbAcevqLz1D7gXIxiq9KlTh7rxywk4jpR9QlDFf9++aj+EhBr0c6oiin3nKLWVe0aEo58Sk/Zn8ch2ZegNfom/7RdbnX2VISaW756an1yzKdLan+lHurMb7n7W8TykTRun8d2evQccopF8t2aZFqfNkHx8yV60gTYEbK6X88M/qJP/IR9LcLV1XN0/WV03Vy7khV45sF6rCs1agnZbwWccx065gFNvUdKSd+lJ9sjWZegNc4TX9xnMynP3ordXhOAdW9V07XqMPc7E9k1TQvTDp97gu+qOPfl6gtvpQT7/spgzv61pEU4B1O3/kRx8m5Ll8eKfUFnzChX30rJd70rGOcPph9ayY1Pad8jvKfrSty67x04kf1ua/eVAcAXqP8bS9x5MqHPgoWT79/NoR+06ov7k+HamT0VrVpWkqnLjWjpB0+9ZaUTlmyU2BVX6Roxou6hI2OeqvrTkaAlzlN/+yZyfKNygAAP8gzf+nh7h8qAACQg7/zAwCwIkx/AIAVYfoDAKwI0x8AYEWY/gAAK8L0BwBYEaY/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsCNMfAGBFmP4AACvC9AcAWBGmPwDAijD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRZj+AAAr8m/67/u+7/tn8fSyA1Nh/0u0bpqJ4lMiWlkHdOufsoy9Fz+A6H/2IRnrp2nsMUsAaY7T/9/DOuQsZUd2ueX40lSrhkX6WR6Y/pHUbHNkYKWp4Gf6f92MEwDwPqfprz/O3EE05YdP/4E+b+XWKq7zVj+/aPrPc7MAFM3pX/15cFyJ3tprH2Cjdf9akJqbui7t/3q9oiJtuLrFr6vUSfncC/y6IvEOP2UK079pyQzOvgUwF6d/999rA+If1VO6/Z0sUbCjU73uOMDlSimik6Z8RiupXB1SqVxbcL86/FTDHJ0rtTRTpIIvGtvi56ojHcBrNP+vb/SgR0OkVHB0/GtBNUwsln5EUu3HrNcpKrtuxhydnC5Kn5H/KIXQyVp18pZ7tXnfjx+vU/vbAV5DT39x5PRT7h/d6C192p2k2cU+n6lgp6iUYT/sjj5k7aX8jOp/1syVvX0KAO8wz/RPnXYnqbnoXDf9mMFOUU1xQfZ+XelDtq4o9ZP9b5oZFe/fMoDX8P/lZytOrHjuy4CmTmlAZKkikmqfovDTtW+1Wu9FS31N6Egq/FeboFM0rTbzni6i0o5vZf2IenV8FJlqBcAL8Lu+ABHljxZmOvwOTH8AgBVh+gMArAjTHwBgRZj+AAArwvQHAFgRpj8AwIq8Pv37vkIX7TK/k9cMy7pa54uA0Rcfn/lC5CR95quf8Au8Pv23cX8nIKX24vS/e2o8MJX0T9/n8z7PPE4AOplh+m9Dz9KQ6X8fvzEf35r+87BOpfCzTDL9t+TULoP3v6R0jvFN/ZPVpohYb/oUwbfqlwVWN0aCOukx7JT6+FKUFvn34yN9v4oovpq3Qx/gdp6Z/uUprT79/qm4eHSbW7L6fnzq5OsR84q+ztJ3B6vX+38I/WOwaTXSb5YcyXbcl9Q9AriLr/vsXw3uOFp6S1bfj+8us2PK3KGvs/jZdbo9mOZRsWX8/pfTlijer0KLR2/5+gC3M8n0z56H60dLb8nq+/GpSp3x9LC+zuJnT6WL9D8vP/89XYgtpp+mE3NjVh/gdmaY/h2HQRxpU01viVY+dPupTo2syRf1xaKZtCNdpH8sdgtqF7emKm6WUE2hC4n0/aQAI3l9+mef+73gtO5oniLL6SAGgRNvTgGz2Gbe6q5R+tWwMnuzb5HJSETHl8Yin1vtdgt7KfMibyRSvmV2DGAwr0//ryA66tDNnG2821U0+u/LCBDC9DdxPjaCyWzNvNvPbPUCbBvTHwBgTZj+AAArwvQHAFgRpj8AwIow/QEAVuT16X/rFyFm+6LFHX5OgtHXS/a/RNu/Dqfed5wBTM7r03975AfATeIdjPUjRnl03Xw5nAf6H5Uw290HmIgZpv925ymd7fwP9BN94HWuxcaxPNN/pj9Amkmm/5b8+zzmZ94t/hePpgehUy6a8cewIfrZWkQr/P6IukRRV/SrtTjmnaQAi/Jdf98/mgJiOjQHh6MvTH5eHutq+inDUvrNWoSImbcp29H/Jh36OksqO8BafOlnf7Eopk8zRVPnQ7m+FZM6lSKl76coxaO9zeY0zVd1HNkr+jpLKjvAWkwy/bOnVIwY/y0te2W6iURVqb7p6afe/yOKMfs/qj8D9XWWVHaAtZhh+vtH9OL0cRLtBxyR5jBypLqnp+lTaz7Tf7/5KX1dggg2Swb4WV6f/tlzuB+orm+1iZM68M2RUcqK+L0YhWKo+fpVt3tB1U+53uhInEvXW636on41rMzutMKqGeBXeX36AzwJcx/gfzD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRZj+AAAr8vr05xt4cxJ9f1+vP+Pq7iw+b/lJ/crCkN9viO77EH77NzBS5+hRXp/+25RHeiqdt/S3rt+hfcXPW7zox0z9CRtiNbrvF2Uj5We49bxX+x9dP80M03+b6VSPcnJ3Rc90LDX9xToMJzv9b0r6Lefl7rypE6Gn//4f1101mGT6b8mnWbTsuL7/JSUupCLPn5dCx8mbratb//iyqhOJi6R+33S9VXsdOmL9lEikiK778mozGu0zyqt1msVGahf9V5Wduo4rqT74/qtvHWPKa6ETNaEaUPV/C7/99/2jazNFM+/Wemqb6br9362vs4jso+6R46dbJ5Ldi1uppUw/0RaRV/tMXX/o1qwG6zJTuY5WzdSn4HKjWddY/9X4av+j9Uf5rs/+UUzHXU+l2Auq7zpWm0lN/3fr6ywie6lZ9m2UH723zBu9dbxIWXJWqnlPwWXeKt31Zv1EG/16m/77Siv9+7av9KeZSOtEi6WfR5lk+pstcFrsXGdT6L3VW5i6qR3+79bXWcz14fdL6Hfc61Ln819TtqMP1esyr/bZNKYdjuq/49kMjtoS+dF5/eBu/2aKVP+PK76rfmaY/n6p2ae2+TSLFKZONV6sD6nrAX2x6Ad31/VBp+iuK5KttvQ+Pzqv8OnX27Sd6lu5eCzB77P2WdW8qa7h/q/4PK40zQzg9emfrXM/0FzXXW6mSOlHL52kzadKPEOj9KthZXa9HqUWjdIbqzrCsM4bIeyl/Ii8VdtO3qqNqHy/CU0doR9l0c4dn2Ufqn6cuvag/7oVvv8tfiRSSat5fT+XeH36A3yIRsDrTGUGfpvnHjamP0yF/ky0shmAwTD9AQBWhOkPALAiTH8AgBVh+gMArAjTHwBgRY7Tf7avN4jvzx5fXhSfquQUza8Sz2OpuaVUMHWi+Ldu7vc+TrAcn+n/eWoneXwjP0Omv9D8Fpr9uV7UkN6mgrP3xamdHwAAdf5N/9mmoTPxr5gsBb/uuEaeR9XSreNvLCOz9yWKf3f6v5UUIIee/uIU7QfKxSi+KlXi7L1ywE4iph9RlzBc9e+bj+IjBb0e6YiinHrLLWZd0aIp5cSn/Jj9cRyaeQFeo2/6R9flXmdLSaS55aen1i/LdLak+lPurcb4nre/TSgTRev+dWSvQ8cpp1ws26VFovgOM1euO1IDvEY5/Y+zQz/xRz6C/nbhqqp5ur5yuk7OHalqfLNAHZa1GvWkjNcijpluHbPApr4jpeNTrR7Vt77sAC9wmv7iOJlPf/RW6vCIY+yPhqb+9cPc7E9k1TQvTDp97gu+qOPfl6gtvpSI920ISx19u5Id4FFO3/kxj5M4Zs2BYh6MT5jQr76VEm961jFOH8y+NZOanlM+R/nP1hW5dV468aP63FdvqgMAr1H+tpc4cuVDHwWLp98/G0K/adUX96dDNTJ6q9o0LaVTl5pR0g6fektKpyzZKbCqL1Lo+L3AtNFRb3W9mQ7gfU7TP3VgOvhGZQCAH+SZv/Rw9w8VAADIwd/5AQBYEaY/AMCKMP0BAFaE6Q8AsCJMfwCAFWH6AwCsCNMfAGBFmP4AAAvy/wGXHlU4StJ/1QAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAf4AAAGBCAIAAAAIeURmAAAgAElEQVR4nO2cUZLjuK5Etd27q7cULe19dIxDJRLJBEVJtHnOx4RMg4kEJKIcPa7a/u///u9///vfBgAA68DoBwBYDkY/AMByMPoBAJaD0Q8AsByMfgCA5WD0AwAsB6MfAGA5GP0AAMvB6AcAWA5GPwDAcvwb/fu+7/v+WTy97MBU2P8SrZtmoviUiFbWAd36pyxj78UPIPqffUiecbVx42ByjqP/35M65CBl53W55fjSVKuGRfpZHhj9kdRsQ2RgpangZ/pvMpsfgByn0X/kGQPRiB8++gf6vJVbq7jOW/2catROZQagh+bor/4wOK5Eb+21j67Run8tSA1NXZf2f71eUZE2XN3i11XqpHzuBX5dkXiHnzKF6d+0ZAZn3wKYiNO/9e+16fCP6hHd/o6VKNjRqV53nN5ypRTRSVM+o5VUrg6pVK4tuF8dfqphjs6VWpopUsEXjW3xc9WRDuAdmv+bN3rKowlSKjg6/rWgGiYWSz8iqfZj1usUlV03Y45OThelz8h/lELoZK06ecu92rzvx4wXZsx0AC+jR3/3I+6f2+gtfdSdpNnFPp+pYKeolGE/7I4+ZO2l/Izqf9aMszdlBmBG5hn9qaPuJDUXneumHzPYKaopLsjeryt9yNYVpX6y/00zo+L9WwbwDv4/+GzFcRUPfRnQ1CkNiCxVRFLtUxR+uvatVuu9aKmvCR1Jhf9qE3SKptVm3tNFVNrxrawfUa+OjyJTrQB4Gn6bFyCi/LnCQIcfgdEPALAcjH4AgOVg9AMALAejHwBgORj9AADLwegHAFiO10d/37flol3m1++aYVlX63znL/qO4zPffZykz3zLE76e10f/Nu7PAKTUXhz9d4+MB0aS/tH7fN7nmccJQA8zjP5t6EEaMvrv4zeG41ujfx7WqRR+k0lG/5Yc2WXw/peUzjG+qX+y2hQR602fIvhW/bLA6sZIUCc9hp1SH1+K0iL/fnyk71cRxVfzdugD3Mszo788otVH3z8SF89tc0tW349PHXs9X17R11n67mD1ev8PoX8MNq1G+s2SI9mO+5K6RwC38HWf+qvBHedKb8nq+/HdZXaMmDv0dRY/u063B6M8KraM3/9y2hLF+1Vo8egtXx/gXiYZ/dnDcP1c6S1ZfT8+Vakzmx7W11n87Kl0kf7n5ee/pwuxxfTTdGJuzOoD3MsMo7/jJIjzbKrpLdHKh24/1ZGRNfmivlg0k3aki/SPxW5B7eLWVMXNEqopdCGRvp8UYBivj/7sQ78XnNYdzVNkORrEFHDizRFgFtvMW901Sr8aVmZv9i0yGYno+NJY5HOr3W5hL2Ve5I1EyrfMjgGM5PXR/xVE5xy6mbONd7uK5v59GQHqMPpNnA+MYDJbM+/2M1u9AIx+AID1YPQDACwHox8AYDkY/QAAy8HoBwBYjtdH/61fe5jtaxV3+DkJRl8m2f8Sbf86nHrfcQYwM6+P/u2R6X+TeAdj/Yg5Hl03Xw7ngf5HJcx29wFmYYbRv915RGc7/AP9RB91nWuxcSzP9J/RD5BjktG/Jf/2jvlpd4v/oaPpQeiUi2b8MWyIfrYW0Qq/P6IuUdQV/WotjnknKcCKfNff649GgBgNzanh6AuTn5fHupp+yrCUfrMWIWLmbcp29L9Jh77OksoOsBBf+qlfLIrR00zR1PlQrm/FmE6lSOn7KUrxaG+zOU3zVR1H9oq+zpLKDrAQk4z+7BEV88V/S8teGW0iUVWqb3T6qff/iGLM/o/qz0B9nSWVHWAhZhj9/vm8OHqcRPsBR6Q5iRyp7tFp+tSaz/Tfb35KX5cggs2SAX6T10d/9hDuB6rrW23cpE57c16UsiJ+L+agmGi+ftXtXlD1U643OhLn0vVWq76oXw0rszutsGoG+EleH/0AT8LQB9g2Rj8AwIIw+gEAloPRDwCwHIx+AIDlYPQDACwHox8AYDleH/182W5Oou/p6/VnXN2dxectP6lfTRjyewzRfR/Cb/+mReocPcfro3+b8jxPpfOW/tb1W7Kv+HmLF/2YqT9hQ6xG9/2ibKT8DLee92r/o+tHmWH0bzMd6VFO7q7omY6lRr9Yh+FkR/9NSb/lvNydN3Ui9Ojf/+O6K8Uko39LPsqiX8f1/S8pcSEVef68FDpO3mxd3frHl1WdSFwk9fum663a69AR66dEIkV03ZdXm9Fon1FerdMsNlK76L+q7NR1XEn1wfdffesYU14LnagJ1YCq//H89t/rj67NFM28W+uRbabr9n+3vs4iso+6R46fbp1Idi9upZYy/URbRF7tM3X9oVuzGqzLTOU6WjVTn4LLjWZdY/1X46v9j9af47s+9UcxHbc8lWIvqL7rWG0mNf3fra+ziOylZtm3UX703jJv9NbxImXJWanmPQWXeat015v1E23062367yut9O/bvtKfZiKtEy2Wfp5jktFv1u/017nOptB7q/cvdUc7/N+tr7OY68Pvl9DvuNelzue/pmxHH6rXZV7ts2lMOxzVf8ezGRy1JfKj8/rB3f7NFKn+H1d8V53MMPr9OrOPbPNRFilMnWq8WB9S1wP6YtEP7q7rg07RXVckW23pfX50XuHTr7dpO9W3cvFYgt9n7bOqeVNdw/1f8XlcaZq5yuujP1vkfqC5rlvcTJHSj146SZuPlHiARulXw8rsej1KLRqlN1Z1hGGdN0LYS/kReau2nbxVG1H5fhOaOkI/yqKdOz7LPlT9OHXtQf91K3z/W/xIpJJW8/p++nl99AN8iM7/60xlBn6bhx42Rj9Mhf40tLIZgJEw+gEAloPRDwCwHIx+AIDlYPQDACwHox8AYDmOo3+2LzOI78keX14Un6rkFM2vDM9jqbmlVDB1RPwrffjexwnW4jP6P4/sJM9u5GfI6Bea30KzP9eLGtLbVHD2vtzxbFznGx8nWI5/o3+2Uegc6SsmS8GvO6uR51G1dOv4G8vI7H2J4l+/oa8bAGigR7/4GLUfKBej+KpUibP3yuk6iZh+RF3CcNW/bz6KjxT0eqQjinLqLbeYdUWLplQU77e36v/KeukNYEb6Rn90Xe51tpREmlt+dGp9f1JU6+rrSTXG97z9bUKZKFr3ryN7HTpOOeVi2S4tcoqP+uCYuXLdLBBgFsrRfzww+nGvni5/u3BV1TxdXzlaJ+eOVDW+WaAOy1qNelLGaxHHTLeOWWBT35GK4u/wk9U08wK8w2n0i7NnPvrRW6mTcwqo7r1ytEad5GZ/IqumeWHS6XNf8EUd/75EbfGlovg+P2VwR986kgK8wOkbPuLsOdflyyOlvqB6jJ3UKfGmZx3j9MHsWzOp6Tnlc5T/bF2RW+elEz+qz331pjoA8A7lr3SJ81Y+8VGwePT9gyH0m1Z9cX80VCOjt6pN01I6dakZJe3wqbekdMqSnQKr+iJFM17UJWx01FtddzICvMlp9GcPTJZvVAYA+DWe+UMOd/9EAQCABPwNHwCA5WD0AwAsB6MfAGA5GP0AAMvB6AcAWA5GPwDAcjD6AQCWg9EPALAcjH4AgOVg9AMALAejHwBgORj9AADLwegHAFgORj8AwHIw+gEAloPRDwCwHIx+AIDlYPQDACwHox8AYDkY/QAAy8HoBwBYjn+jf9/3fd8/i6eXHZgK+1+iddNMFJ8S0co6oFv/lGXsvfgBRP+zD8lYPyI7Nw6m5jj6/z2pQw5Sdl6XW44vTTV9AodM/753LyaabYgMrDQV/Ez/O8zMf8sAzpxGv/gUcxPRiB8++gf6vJVbq7jOW/38otE/z80CCGmO/uoPg+NK9NZe+xwUrfvXgmpYtFfXpf1fr1dUpA1Xt/h1lTopn3uBX1ck3uGnTGH6Ny058VH2PgWApzn9W/9emw7/qB7R7e9YiYIdnep1x+ktV0oRnTTlM1pJ5eqQSuXagvvV4aca5uhcqaWZIhV80ZjvE2Bemv+bd//LKaacIKWCo+NfC6phYrH0I5JqP2a9TlHZdTPm6OR0UfqM/EcphE7WqpO33KvN+378eNMJwKTo0S/Om37E/XMbvaWPupM0u9jnMxXsFJUy7Ifd0YesvZSfUf3PmvH3pu4gwFzMM/pTR91Jai46100/ZrBTVFNckL1fV/qQrStK/WT/m2Z8/zrSFwF4B/8ffLbiuFaf773A1CkNiCxVRFLtUxR+uvatVuu9aKmvCR1Jhf9qE3SKptVm3tNFVNrxrawfUa/e0vcuwMvw27wAEeXPFQY6/AiMfgCA5WD0AwAsB6MfAGA5GP0AAMvB6AcAWA5GPwDAcrw++vu+LRftMr9+1wzLulrnO3/Rdxyf+e7jJH3mW57w9bw++rdxfwYgpfbi6L97ZDwwkvSP3ufzPs88TgB6mGH0b0MP0pDRfx+/MRzfGv3zsE6l8JtMMvq35Mgug/e/pHSO8U39k9WmiFhv+hTBt+qXBVY3RoI66THslPr4UpQW+ffjI32/iii+mrdDH+Benhn95RGtPvr+kbh4bptbsvp+fOrY6/nyir7O0ncHq9f7fwj9Y7BpNdJvlhzJdtyX1D0CuIWv+9RfDe44V3pLVt+P7y6zY8Tcoa+z+Nl1uj0Y5VGxZfz+l9OWKN6vQotHb/n6APcyyejPHobr50pvyer78alKndn0sL7O4mdPpYv0Py8//z1diC2mn6YTc2NWH+BeZhj9HSdBnGdTTW+JVj50+6mOjKzJF/XFopm0I12kfyx2C2oXt6YqbpZQTaELifT9pADDeH30Zx/6veC07mieIsvRIKaAE2+OALPYZt7qrlH61bAye7NvkclIRMeXxiKfW+12C3sp8yJvJFK+ZXYMYCSvj/6vIDrn0M2cbbzbVTT378sIUIfRb+J8YAST2Zp5t5/Z6gVg9AMArAejHwBgORj9AADLwegHAFgORj8AwHK8Pvpv/drDbF+ruMPPSTD6Msn+l2j71+HU+44zgJl5ffRvj0z/m8Q7GOtHzPHouvlyOA/0PyphtrsPMAszjP7tziM62+Ef6Cf6qOtci41jeab/jH6AHJOM/i35t3fMT7tb/A8dTQ9Cp1w0449hQ/SztYhW+P0RdYmiruhXa3HMO0kBVuS7/l5/NALEaGhODUdfmPy8PNbV9FOGpfSbtQgRM29TtqP/TTr0dZZUdoCF+NJP/WJRjJ5miqbOh3J9K8Z0KkVK309Rikd7m81pmq/qOLJX9HWWVHaAhZhk9GePqJgv/lta9spoE4mqUn2j00+9/0cUY/Z/VH8G6ussqewACzHD6PfP58XR4yTaDzgizUnkSHWPTtOn1nym/37zU/q6BBFslgzwm7w++rOHcD9QXd9q4yZ12pvzopQV8XsxB8VE8/WrbveCqp9yvdGROJeut1r1Rf1qWJndaYVVM8BP8vroB3gShj7AtjH6AQAWhNEPALAcjH4AgOVg9AMALAejHwBgORj9AADL8fro58t2cxJ9T1+vP+Pq7iw+b/lJ/WrCkN9jiO77EH77Ny1S5+g5Xh/925TneSqdt/S3rt+SfcXPW7zox0z9CRtiNbrvF2Uj5We49bxX+x9dP8oMo3+b6UiPcnJ3Rc90LDX6xToMJzv6b0r6Lefl7rypE6FH//4f110pJhn9W/JRFv06ru9/SYkLqcjz56XQcfJm6+rWP76s6kTiIqnfN11v1V6Hjlg/JRIpouu+vNqMRvuM8mqdZrGR2kX/VWWnruNKqg++/+pbx5jyWuhETagGVP2P57f/Xn90baZo5t1aj2wzXbf/u/V1FpF91D1y/HTrRLJ7cSu1lOkn2iLyap+p6w/dmtVgXWYq19GqmfoUXG406xrrvxpf7X+0/hzf9ak/ium45akUe0H1XcdqM6np/259nUVkLzXLvo3yo/eWeaO3jhcpS85KNe8puMxbpbverJ9oo19v039faaV/3/aV/jQTaZ1osfTzHJOMfrN+p7/OdTaF3lu9f6k72uH/bn2dxVwffr+Efse9LnU+/zVlO/pQvS7zap9NY9rhqP47ns3gqC2RH53XD+72b6ZI9f+44rvqZIbR79eZfWSbj7JIYepU48X6kLoe0BeLfnB3XR90iu66ItlqS+/zo/MKn369TdupvpWLxxL8PmufVc2b6hru/4rP40rTzFVeH/3ZIvcDzXXd4maKlH700knafKTEAzRKvxpWZtfrUWrRKL2xqiMM67wRwl7Kj8hbte3krdqIyveb0NQR+lEW7dzxWfah6sepaw/6r1vh+9/iRyKVtJrX99PP66Mf4EN0/l9nKjPw2zz0sDH6YSr0p6GVzQCMhNEPALAcjH4AgOVg9AMALAejHwBgORj9AADLcRz9s32ZQXxP9vjyovhUJadofmV4HkvNLaWCqdOMf7gV3/s4wVp8Rv/nkZ3k2Y38DBn9QvNbaPbnelFDepsKzt6XZrz/I2Qg3/g4wXL8G/2zjUJn3F8xWQp+3VmNPI+qpVvH3xhN6uO1P/rL+P2AaX4U3/hEwVro0V+duceX0WIUX5UqcfZeOV0nEdOPqEsYrvr3zUfxkYJej3REUU695RazrmjRlBLxp7dMP2Z/HIdmXoB36Bv90XW519lSEmlu+dGp9f3pUK2rryfVGN/z9rcJZaJo3b+O7HXoOOWUi2W7tMgpPusnW5ejb/YB4B3K0b//x9Z63I98BP3twlVV83R95WidnDtS1fhmgTosazXqSRmvRRwz3TpmgU19RyqKL302LY3qmxYEmIXT6Bdnz3z0o7dSJ+cUUN175WiNOsnN/kRWTfPCpNPnvuCLOv59idriSznxvp8yuKNvHUkBXuD0DR9xlpzr8uWRUl/wCRP61bdS4k3POsbpg9m3ZlLTc8rnKP/ZuiK3zks/3vdzpcZSP9UBgHcof6VLnLfyiY+CxaPvHwyh37Tqi/ujoRoZvVVtmpbSqUvNKGmHT70lpVOW7BRY1RcpnHhdnRnZt65zAbzPafT7R6WPb1QGAPg1nvlDDnf/RAEAgAT8DR8AgOVg9AMALAejHwBgORj9AADLwegHAFgORj8AwHIw+gEAloPRDwCwHIx+AIDlYPQDACwHox8AYDkY/QAAy8HoBwBYDkY/AMByMPoBAJaD0Q8AsByMfgCA5WD0AwAsB6MfAGA5GP0AAMvB6AcAWI5/o3/f933fP4unlx2YCvtfonXTTBSfEtHKOqBb/5Rl7L34AUT/sw/JcEtRXm4cTM1x9P97UoccpOy8LrccX5pq1bBIP8sDoz+Smm2IDKw0FfxM/7Nm9FMHMCmn0d/8LDOc6BQNH/0Dfd7K5KPkrX5+0eif52YBhDRHf/WHwXEleqt6HvQ5ca4F1bBor65L+79er6hIG65u8esqdVI+9wK/rki8w0+ZwvRvWvKDy9R+RoA3Of1bf/Vp/kf0iIuDWs0ojkp53XF6y5VSRCdN+YxWUrk6pFK5tuB+dfiphjk6V2pppkgFXzR2DGs6AZiU5v/m3f9yiiknSKng6PjXgmqYWCz9iKTaj1mvU1R23Yw5OjldlD4j/1EKoZO16uQt92rzvh8zvmxgsy6AudCjX5w3/Yj75zZ6Sx91J2l2sc9nKtgpKmXYD7ujD1l7KT+j+p814+xNmQGYkXlGf+qoO0nNRee66ccMdopqiguy9+tKH7J1Ramf7H/TzKh4/5YBvIP/Dz5bcVzFQ18GNHVKAyJLFZFU+xSFn659q9V6L1rqa0JHUuG/2gSdomm1mfd0EZV2fCvrR9Sr46PIVCsAnobf5gWIKH+uMNDhR2D0AwAsB6MfAGA5GP0AAMvB6AcAWA5GPwDAcjD6AQCW4/XR3/dtuWiX+fW7ZljW1Trf+Yu+4/jMdx8n6TPf8oSv5/XRv437MwAptRdH/90j44GRpH/0Pp/3eeZxAtDDDKN/G3qQhoz++/iN4fjW6J+HdSqF32SS0b8lR3YZvP8lpXOMb+qfrDZFxHrTpwi+Vb8ssLoxEtRJj2Gn1MeXorTIvx8f6ftVRPHVvB36APfyzOgvj2j10fePxMVz29yS1ffjU8dez5dX9HWWvjtYvd7/Q+gfg02rkX6z5Ei2476k7hHALXzdp/5qcMe50luy+n58d5kdI+YOfZ3Fz67T7cEoj4ot4/e/nLZE8X4VWjx6y9cHuJdJRn/2MFw/V3pLVt+PT1XqzKaH9XUWP3sqXaT/efn57+lCbDH9NJ2YG7P6APcyw+jvOAniPJtqeku08qHbT3VkZE2+qC8WzaQd6SL9Y7FbULu4NVVxs4RqCl1IpO8nBRjG66M/+9DvBad1R/MUWY4GMQWceHMEmMU281Z3jdKvhpXZm32LTEYiOr40Fvncardb2EuZF3kjkfIts2MAI3l99H8F0TmHbuZs492uorl/X0aAOox+E+cDI5jM1sy7/cxWLwCjHwBgPRj9AADLwegHAFgORj8AwHIw+gEAluP10X/r1x5m+1rFHX5OgtGXSfa/RNu/Dqfed5wBzMzro397ZPrfJN7BWD9ijkfXzZfDeaD/UQmz3X2AWZhh9G93HtHZDv9AP9FHXedabBzLM/1n9APkmGT0b8m/vWN+2t3if+hoehA65aIZfwwbop+tRbTC74+oSxR1Rb9ai2PeSQqwIt/19/qjESBGQ3NqOPrC5Oflsa6mnzIspd+sRYiYeZuyHf1v0qGvs6SyAyzEl37qF4ti9DRTNHU+lOtbMaZTKVL6fopSPNrbbE7TfFXHkb2ir7OksgMsxCSjP3tExXzx39KyV0abSFSV6hudfur9P6IYs/+j+jNQX2dJZQdYiBlGv38+L44eJ9F+wBFpTiJHqnt0mj615jP995uf0tcliGCzZIDf5PXRnz2E+4Hq+lYbN6nT3pwXpayI34s5KCaar191uxdU/ZTrjY7EuXS91aov6lfDyuxOK6yaAX6S10c/wJMw9AG2jdEPALAgjH4AgOVg9AMALAejHwBgORj9AADLwegHAFiO10c/X7abk+h7+nr9GVd3Z/F5y0/qVxOG/B5DdN+H8Nu/aZE6R8/x+ujfpjzPU+m8pb91/ZbsK37e4kU/ZupP2BCr0X2/KBspP8Ot573a/+j6UWYY/dtMR3qUk7sreqZjqdEv1mE42dF/U9JvOS93502dCD369/+47koxyejfko+y6Ndxff9LSlxIRZ4/L4WOkzdbV7f+8WVVJxIXSf2+6Xqr9jp0xPopkUgRXffl1WY02meUV+s0i43ULvqvKjt1HVdSffD9V986xpTXQidqQjWg6n88v/33+qNrM0Uz79Z6ZJvpuv3fra+ziOyj7pHjp1snkt2LW6mlTD/RFpFX+0xdf+jWrAbrMlO5jlbN1KfgcqNZ11j/1fhq/6P15/iuT/1RTMctT6XYC6rvOlabSU3/d+vrLCJ7qVn2bZQfvbfMG711vEhZclaqeU/BZd4q3fVm/UQb/Xqb/vtKK/37tq/0p5lI60SLpZ/nmGT0m/U7/XWusyn03ur9S93RDv936+ss5vrw+yX0O+51qfP5rynb0YfqdZlX+2wa0w5H9d/xbAZHbYn86Lx+cLd/M0Wq/8cV31UnM4x+v87sI9t8lEUKU6caL9aH1PWAvlj0g7vr+qBTdNcVyVZbep8fnVf49Ott2k71rVw8luD3Wfusat5U13D/V3weV5pmrvL66M8WuR9orusWN1Ok9KOXTtLmIyUeoFH61bAyu16PUotG6Y1VHWFY540Q9lJ+RN6qbSdv1UZUvt+Epo7Qj7Jo547Psg9VP05de9B/3Qrf/xY/Eqmk1by+n35eH/0AH6Lz/zpTmYHf5qGHjdEPU6E/Da1sBmAkjH4AgOVg9AMALAejHwBgORj9AADLwegHAFiO4+if7csM4nuyx5cXxacqOUXzK8PzWGpuKRVMnWb8w6343scJ1uIz+j+P7CTPbuRnyOgXmt9Csz/XixrS21Rw9r404/0fIQP5xscJluPf6J9tFDrj/orJUvDrzmrkeVQt3Tr+xmhSH6/90V/G7wdM86P4xicK1kKP/urMPb6MFqP4qlSJs/fK6TqJmH5EXcJw1b9vPoqPFPR6pCOKcuott5h1RYumlIg/vWX6MfvjODTzArxD3+iPrsu9zpaSSHPLj06t70+Hal19PanG+J63v00oE0Xr/nVkr0PHKadcLNulRU7xWT/Zuhx9sw8A71CO/v0/ttbjfuQj6G8Xrqqap+srR+vk3JGqxjcL1GFZq1FPyngt4pjp1jELbOo7UlF86bNpaVTftCDALJxGvzh75qMfvZU6OaeA6t4rR2vUSW72J7JqmhcmnT73BV/U8e9L1BZfyon3/ZTBHX3rSArwAqdv+Iiz5FyXL4+U+oJPmNCvvpUSb3rWMU4fzL41k5qeUz5H+c/WFbl1Xvrxvp8rNZb6qQ4AvEP5K13ivJVPfBQsHn3/YAj9plVf3B8N1cjorWrTtJROXWpGSTt86i0pnbJkp8CqvkjhxOvqzMi+dZ0L4H1Oo98/Kn18ozIAwK/xzB9yuPsnCgAAJOBv+AAALAejHwBgORj9AADLwegHAFgORj8AwHIw+gEAloPRDwCwHIx+AIDlYPQDACwHox8AYDkY/QAAy8HoBwBYDkY/AMByMPoBAJaD0Q8AsByMfgCA5WD0AwAsB6MfAGA5GP0AAMvB6AcAWA5GPwDAcvwb/fu+7/v+WTy97MBU2P8SrZtmoviUiFbWAd36pyxj78UPIPqffUiGW4rycuNgao6j/9+TOuQgZed1ueX40lSrhkX6WR4Y/ZHUbENkYKWp4Gf6nzWjnzqASTmN/uZnmeFEp2j46B/o81YmHyVv9fOLRv88NwsgpDn6qz8MjivRW9XzoM+Jcy2ohkV7dV3a//V6RUXacHWLX1epk/K5F/h1ReIdfsoUpn/TkhlcTe1nBHiT07/177Xp8I/oERcHtZpRHJXyuuP0liuliE6a8hmtpHJ1SKVybcH96vBTDXN0rtTSTJEKvmjsGHZsZl86gHdo/m9e/YiXE6RUcHT8a0E1TCyWfkRS7ces1ykqu27GHIQGvCUAAAjxSURBVJ2cLkqfkf8ohdDJWnXylnu1ed+PH286AZgUPfrFedOPuH9uo7f0UXeSZhf7fKaCnaJShv2wO/qQtZfyM6r/WTOpvaO6AfA084z+1FF3kpqLznXTjxnsFNUUF2Tv15U+ZOuKUj/Z/6YZ37+O9EUA3sH/B5+tOK7V53svMHVKAyJLFZFU+xSFn659q9V6L1rqa0JHUuG/2gSdomm1mfd0EZV2fCvrR9Trmy8DnNQAL8Bv8wJElD9XGOjwIzD6AQCWg9EPALAcjH4AgOVg9AMALAejHwBgORj9AADL8fro7/u2XLTL/Prd8C9lr/Odv+g7js9893GSPvMtT/h6Xh/927g/A5BSe3H03z0yHhhJ+kfv83mfZx4nAD3MMPq3oQdpyOi/j98Yjm+N/nlYp1L4TSYZ/VtyZJfB+19SOsf4pv7JalNErDd9iuBb9csCqxsjQZ30GHZKfXwpSov8+/GRvl9FFF/N26EPcC/PjP7yiFYfff9IXDy3zS1ZfT8+dez1fHlFX2fpu4PV6/0/hP4x2LQa6TdLjmQ77kvqHgHcwtd96q8Gd5wrvSWr78d3l9kxYu7Q11n87DrdHozyqNgyfv/LaUsU71ehxaO3fH2Ae5lk9GcPw/Vzpbdk9f34VKXObHpYX2fxs6fSRfqfl5//ni7EFtNP04m5MasPcC8zjP6OkyDOs6mmt0QrH7r9VEdG1uSL+mLRTNqRLtI/FrsFtYtbUxU3S6im0IVE+n5SgGG8PvqzD/1ecFp3NE+R5WgQU8CJN0eAWWwzb3XXKP1qWJm92bfIZCSi40tjkc+tdruFvZR5kTcSKd8yOwYwktdH/1cQnXPoZs423u0qmvv3ZQSow+g3cT4wgslszbzbz2z1AjD6AQDWg9EPALAcjH4AgOVg9AMALAejHwBgOV4f/bd+7WG2r1Xc4eckGH2ZZP9LtP3rcOp9xxnAzLw++rdHpv9N4h2M9SPmeHTdfDmcB/oflTDb3QeYhRlG/3bnEZ3t8A/0E33Uda7FxrE8039GP0COSUb/lvzbO+an3S3+h46mB6FTLprxx7Ah+tlaRCv8/oi6RFFX9Ku1OOadpAAr8l1/rz8aAWI0NKeGoy9Mfl4e62r6KcNS+s1ahIiZtynb0f8mHfo6Syo7wEJ86ad+sShGTzNFU+dDub4VYzqVIqXvpyjFo73N5jTNV3Uc2Sv6OksqO8BCTDL6s0dUzBf/LS17ZbSJRFWpvtHpp97/I4ox+z+qPwP1dZZUdoCFmGH0++fz4uhxEu0HHJHmJHKkuken6VNrPtN/v/kpfV2CCDZLBvhNXh/92UO4H6iub7VxkzrtzXlRyor4vZiDYqL5+lW3e0HVT7ne6EicS9dbrfqifjWszO60wqoZ4Cd5ffQDPAlDH2DbGP0AAAvC6AcAWA5GPwDAcjD6AQCWg9EPALAcjH4AgOV4ffTzZbs5ib6nr9efcXV3Fp+3/KR+NWHI7zFE930Iv/2bFqlz9Byvj/5tyvM8lc5b+lvXb8m+4uctXvRjpv6EDbEa3feLspHyM9x63qv9j64fZYbRv810pEc5ubuiZzqWGv1iHYaTHf03Jf2W83J33tSJ0KN//4/rrhSTjP4t+SiLfh3X97+kxIVU5PnzUug4ebN1desfX1Z1InGR1O+brrdqr0NHrJ8SiRTRdV9ebUajfUZ5tU6z2Ejtov+qslPXcSXVB99/9a1jTHktdKImVAOq/sfz23+vP7o2UzTzbq1Htpmu2//d+jqLyD7qHjl+unUi2b24lVrK9BNtEXm1z9T1h27NarAuM5XraNVMfQouN5p1jfVfja/2P1p/ju/61B/FdNzyVIq9oPquY7WZ1PR/t77OIrKXmmXfRvnRe8u80VvHi5QlZ6Wa9xRc5q3SXW/WT7TRr7fpv6+00r9v+0p/mom0TrRY+nmOSUa/Wb/TX+c6m0Lvrd6/1B3t8H+3vs5irg+/X0K/416XOp//mrIdfahel3m1z6Yx7XBU/x3PZnDUlsiPzusHd/s3U6T6f1zxXXUyw+j368w+ss1HWaQwdarxYn1IXQ/oi0U/uLuuDzpFd12RbLWl9/nReYVPv96m7VTfysVjCX6ftc+q5k11Dfd/xedxpWnmKq+P/myR+4Hmum5xM0VKP3rpJG0+UuIBGqVfDSuz6/UotWiU3ljVEYZ13ghhL+VH5K3advJWbUTl+01o6gj9KIt27vgs+1D149S1B/3XrfD9b/EjkUpazev76ef10Q/wITr/rzOVGfhtHnrYGP0wFfrT0MpmAEbC6AcAWA5GPwDAcjD6AQCWg9EPALAcjH4AgOU4jv7Zvswgvid7fHlRfKqSUzS/MjyPpeaWUsHUacY/3IrvfZxgLT6j//PITvLsRn6GjH6h+S00+3O9qCG9TQVn70sz3v8RMpBvfJxgOf6N/tlGoTPur5gsBb/urEaeR9XSreNvjCb18dof/WX8fsA0P4pvfKJgLfTor87c48toMYqvSpU4e6+crpOI6UfUJQxX/fvmo/hIQa9HOqIop95yi1lXtGhKifjTW6Yfsz+OQzMvwDv0jf7outzrbCmJNLf86NT6/nSo1tXXk2qM73n724QyUbTuX0f2OnSccsrFsl1a5BSf9ZOty9E3+wDwDuXo3/9jaz3uRz6C/nbhqqp5ur5ytE7OHalqfLNAHZa1GvWkjNcijpluHbPApr4jFcWXPpuWRvVNCwLMwmn0i7NnPvrRW6mTcwqo7r1ytEad5GZ/IqumeWHS6XNf8EUd/75EbfGlnHjfTxnc0beOpAAvcPqGjzhLznX58kipL/iECf3qWynxpmcd4/TB7Fszqek55XOU/2xdkVvnpR/v+7lSY6mf6gDAO5S/0iXOW/nER8Hi0fcPhtBvWvXF/dFQjYzeqjZNS+nUpWaUtMOn3pLSKUt2CqzqixROvK7OjOxb17kA3uc0+v2j0sc3KgMA/BrP/CGHu3+iAABAAv6GDwDAcjD6AQCWg9EPALAcjH4AgOVg9AMALAejHwBgORj9AADLwegHAFgORj8AwHIw+gEAloPRDwCwGv8PSnNI26HlhvYAAAAASUVORK5CYII=" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABCMAAABeCAIAAACW3kmTAAAOV0lEQVR4nO3dW3bcOLNEYU7Xs/JQOLR+sF1NEZmBSBC8Sft7OItFgZEJsNwL6D6/tfz+/fvXr18LAAAAAEzESQMAAADAfJw0AAAAAMzHSQMAAADAfJw0AAAAAMzHSQMAAADAfJw0AAAAAMzHSQMAAADAfJw0AAAAAMzHSQMAAADAfJw0AAAAAMzHSQMAAADAfH9OGuu6ruv6ubn7OMBMWL/K7pvNZONLITpZDxjO31WZ+y6+AbH+1S/JwR5OLQEAAPCtbE8afzZSU/Zt1eNB+8j2o5kWDsvyqy44aWRRT9vjTpxpafA1639LPgAAwDe0O2lc9m+IP7ITxfSTxsQ+T3XqLI67az1vPGk8Z/EBAADepHvSCM8e2zvZj9boX8xn9/1robRH1/PS/R+fr5iRbjh8xJ9Xm1Pqc23488rCB/ppS5j9my3pZAAAAFh2/zuNNdqM/hHuCJevu9hssJMTXg9sFts7bYguWuozu1OqNRBVqrUk72ugn3CYk3NkLt0SpcGlxqqPAwAA4K/u/yJ8/Wo3pt2wtglOjn8thMPEzbYfUVT3Y87XmVT1vjlm28nuou0z6z8rIXKqrTp122d1834/5nwBAADQp08aYnund2D+NjH7kd5ZOkWrN8f6LA12JlVq2B92xjpU2yv1M2v9q810wwEAAGB5zkmjtLN0ipo3netuP+ZgZ1LdcKH6vo6sQ3VeWekr17/bTDbefwUAAAD4y///nlqa3aHYk7UDujltA6JKSBTVfYqJ7679VsP5HmxpbBEGior+w0XQJbqtduvuLrKpbX9U7UfMdzvAnBoAAAD4HeEAAAAATsBJAwAAAMB8nDQAAAAAzMdJAwAAAMB8nDQAAAAAzMdJAwAAAMB8nDQAAAAAzHf7SWPs1xRkT5m/QqE7rNrVz/llC9nvqaj+/ooj1c/LL7XxhE4AAACe6/aTxjK0fRSPmGk3njTO3qFesAPWJ73r617vOZ0AAAA81BNOGsvUfduUk8Z5vsde/K6TxnP8nJkCAAAMeshJYymeENrB61elnO34bv6u1W6IuN/tUww+Nb+dYPhgFqiLboftSm8/iqll/fvjs3x/Ftn4sO5APgAAwOtdc9Jod4ThTsvfgR3cJnYfqeb740u7TL2dvSVfVxl7g+H1+o/I3w42W83yu1POYgfeS+kdAQAAvNXr/ptGOHhgG6cfqeb744enObCjPSNfV/Gr63JrcnLIJtuOX7/aPZKN92ehw7Mf+fkAAACv95CTRnXvdXwbpx+p5vvjSzN1tsIX5+sqfvVSuSz/8/Hzf3cX4hGzn24n5oPVfAAAgNd7wkljYOMlto9mmn4ku/Mx3E+4Q602eWO+uGkWHSiX5W8nuyRzF68mDDenEJbQE8ny/aIAAABvcvtJo7rHWhu7+07mbmS7ExWbTme8ueM0J9utGz41Kz8c1lbvrlvWZBaix7eNZX0u0esW7ZWaF3WzkPZH5ooBAAC8zO0njVfItpUY9sxlPLur7JhxXkUAAIDbcNIwOf86HKanLebZ/TxtvgAAAFfgpAEAAABgPk4aAAAAAObjpAEAAABgPk4aAAAAAObjpAEAAABgvttPGqf+hTxP+wt/zuhnF5j9NUfrV9njr+PM957OAAAAfrjbTxrLJYeNk8IHzO1HHBuy6+7H6S5Y/2wKT3v7AAAAP8gTThrLmTvCp+01J/aT/Yt851o8ONc1689JAwAA4HEectJY7E3huhE+G/4o3F7rHkROe9Mcvx02Jb86F7EU/vqIeYlJHckP5+I07xQFAADAKa45abQ7zrF9YbbjFDvR7ibVyRdNfj5u59Xtpx1Wyu/ORYSYdbuxA+vfNZCvq5SqAwAAYKaX/jcNcVPsdLslujkf7f2lORWUSpTy/RJtePZsd3G6zYc5TuyRfF2lVB0AAAAzPeSkUd0Riu2s/yMde2QnLQqFUWM7db/0+k82xlz/WeszMV9XKVUHAADATE84afjbwYM7XafQuuGEdDe+TtTwTt3sU2des/7+4pfy9RTEYHPKAAAAGHT7SaO651s3wvtLtLstbS6729M2Voxfm2232ED7+WG3ayPsp73fWZG8lp5vOOuD+eGwtrqzFNacAQAAMOb2kwZwJc4YAAAAF+GkAQAAAGA+ThoAAAAA5uOkAQAAAGA+ThoAAAAA5uOkAQAAAGA+ThoAAAAA5rv9pMHfOvpM2e/H0Pev6ers2N0v7qguhZ/ffaRUtPtS/NUz5zUwuBty3vu94Pt5i4NfTjFefBTjd8L72XinyfbjWN0wc4nWs9RktjjZLMQjR9ZHzLH9kW4p69xcjYHB2eP+Kxiucl7yqc1fsDjbQmdkXrZE5yWfN4W7vj/TKt5+0lied9iY1cwFf+ZPzV+Gfvf2Lf1MiV2jX/JYva7md5/K7ux+Gv6TYqxuVl0Pm/Jqsu/Vwdgs+Rqz6oY54fqXvpxtVHanWyv8KFrapXX7FN/nsG6W7/Rv3tetiilki7a7Dvt3ijpzFK2G83Ue7DY2YLjukSonJZ9R5ez8XaFT+z/JBctyXq17vz9zKj7hpLE86bAxq5OzZ3TNimVVqvcfbo1sf7S7rv6TReR3n8ru+NfVuuakSsOGi87Kn9vn9XWznPB+9n2olth9Zz7XIt/p03wkCwm/zyJEf6nMxqpLWnovOry6Ptm1v/7ZAH/Nx/p3EnY9TLFuTIzd5bfXZ9c6I/mM/PeuSZh/0vfzpHAnX9x0m3nISWMp/mOrHRzeX78qhYuorOfPR5Hj1K3Oazh/+zHMycJFUX/d9HzD9gZyxP1doTAtvG5jtWp++FHU1YFhXbPV8L7fkphR+KAo6jTv9OnMa3untA5+/+GPtmPaa5GTLUI2INSdlJO5azu7352CCA+XIqsr5lVqTF/rfqp1xVOa06SeZnhn92CYU1qHNsqcl/9UKV+3Oiu/VOVp+eFLn5U/PM2H5A+UG+j/mvXPHmnv19bnmpPGGsmGdXOOX5slunWX/E9g4R0M9X92vq4iqs96R04/wzlZ7Nq8yvUrP7OU353d7ubufjewrav7LF2HLZUyw8FiWLX/5eu6OaV3g9sHzXnN7T8cH65/dt+sHua37fktdVstdbgmr8PM15MKHxTDdKvZzWx9zKhuUbE4Ypqit25Ot6WxAYt8711jq+c7qZmBR8w3MpCffa/m5p/d/3n5F4w/u//uEo396fjfu/6bhrMKznW1xNoIf+q02i1q9n92vq4iqreZ7brN6kc/29bNfuTEdmuFqzHQdvZUN7Cdrx/oNNbmi8xuP+GD7c1uz+Zgc2pt/37bR9anW0jnZDfbfoR2ZJuTDQjvhP07IWaH2XJVm3TWXF+369NGicGi1exmqNtwWFqvT/t4mGOuwy4zWwcxWGQO5+tW35JfqjK8/mOPmM0vZ/Z/Xn5YaGL+Z4zfz/T+q+9x7yEnjdLy6fvOdbWEfjZ8ncMv2Oz/7Hxdxbw//X2J/IF3PRxbfRdjbbex1XU70qe5nt3XVMrUU+4y+/xcD6+VP3i4f7NEaf396lnO8LoNL7Xo0JymM69SvtNwON4J1N0OFA2v9fpnA3SO05XuTSf4j1Tzj4wcXoS5+aVCPy3/7PFHRj6nfzE4vL/+Y0U/4aRx/A1Vr50SZk44XtyfMq8L8sVNf/DwvD50ieF5zY3tlhD5y9cpi6eON1bq80jm8KKJKXeb9/sMM0+a1/T+j/TpV/d70P2Ulqjaoc4051VdZ7PbsERWV/TjV/QznfXv9jzcmM6sPv75eCRfjzye77zfJ+dntd7S/zXrk438Hv1n983w+08ahV4348Vyz1rxan720Skq+szmOz0/HNZW1/ez0mKh9INhjmhY181k7ek5hutQyjfn2w4z19OpG7aRLa/ZpJMj8rMqunOnz3Ydwn6cea3GeznS/5J/JUpFj69b+FGM32k77+boJtuPWV1nXm3p7rzMPrN1EHMRzTh1nfmGbYT5pRyzsTDcyWkXU/RZzV8b78pfiu9xIF9UeUX/F6xPNuwV/etw/ZRO/uv2kwbwsf3iFr7Ej7EmzAdP7w94g+E/R3i1gfde+mKQTz75pfxZpTlp4FmO/wF4kR81WQAA8ONw0gAAAAAwHycNAAAAAPNx0gAAAAAwHycNAAAAAPNx0gAAAAAw3/ak8bS/BqftZ3fn+F/R9bQpl2TN3zipgdLZKzZzsvF3vdz3fp0AAAAm+5w0Pjukh2yVsn6mnDRE5lt01+f4pKasbWlw9b04c+ewAQAAcI8/J42n7byd08WRJtvA120Ns55nzWU4x3+wHVl9L874W17uG79RAAAAk+mThvh3w+tGezMbH0a1nGePbOZ2IWY/Yl6i4bB/v/lsfJag72c5YlLOfNtHzHllN80oZ3ypH3N9nA7NugAAAN/W2Ekju26fdR5pZZlLfaeu89tpOo+U1qd9Nhzj97x8XYS2UHbfv87aG8hxptPebJdLh4Tj23VwmjlynWUCAAD8RO1JY7s/07urrU+g/7joKszcXR/Zye06d6LC8d0J6mHVVrM1acfrEKeZ4Rxzgt18J8oZP6uf6hzNugAAAN/W7qQhtm7mTiv7UWmjthsQPntkJzdr49hdn6xVs3nRpLPOY4MP5vjvJVsWP8oZ7/fTDh5Yt4GiAAAA39Pu754SWzfnuv241eYLn2EiP/xRKbzbsx7jrIO5bt2iZs+lPmf1X51X1q3z0Rk/a53H5ltaAQAAgG+r/c19YnvXbrCywWKn5e/DRH63VT/c34mGI7MfhYumo3TpNjMrOtCnfqSU007ZmWCYL0p0x4t5iTYG5hvedyoCAAB8c7uTRnV/VvXGZAAAAABl7X/TOMPZBxgAAAAAz3LNSQMAAADAz8JJAwAAAMB8nDQAAAAAzMdJAwAAAMB8nDQAAAAAzMdJAwAAAMB8nDQAAAAATPcf9tKZWRS9NpwAAAAASUVORK5CYII=" alt="" />
最后一个表:a,有几点注意:insert_method=last,如果是insert_method=0,则会报错,执行不成功。
注意,合并表也必须和前面的表有相同的结构,类型,长度,包括字段的顺序都必须一致这里。
好了,当需要查询的时候,我们可以只对article这个表进行操作就可以了,也就是说这个表仅仅只能进行select操作,
那么对于 插入也就是insert操作应该如何来搞呢,首先就是获取唯一的id了,这里就还需要一个表来专门创建id,代码如下:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtcAAABCCAIAAAAT2G3TAAAIs0lEQVR4nO2dQZbbOAxEfd3cKkfR0WbRLx61QBQLFG1K9v8rmYYKBVBN4WXSmcffv3///PnzAAAAAHgzTCEAAACwBqYQAAAAWANTCAAAAKyBKQQAAADWwBQCAAAAa2AKAQAAgDUwhQAAAMAamEIAAABgDUwhAAAAsAamEAAAAFgDUwgAAACsgSkEAAAA1sAUAgAAAGtgCgEAAIA1/Ewh27Zt2/ZcPHwcwFTYfpOtm2ay+JKIVtYBw/qHLHP34gMQ/a8+JGvpVuHfAgDwCeynkJ/DbsqZXh0d4i37j6ZaMyzTr/KGKSSTutp7aGKlpeD39P+lCJ/66QUA+EwOU8ie9xjIpo3pU8hEny/l4m+jVf38jClEcP3pEwBgPt0ppDmX7Feyr5pHqj5qnWtB6f2t69L+z9crKtKGm7f4dUWdks8t4NeViQ/4iSlM/6aluBhTTNEXdfnKAAA35vD3QpoH7g/ZKSnO1mZGcdrG64GDPq7oI9651l81V0q5BqRKuR7Jfg34aYY5Omdq6aYoBetcs/p2sqiSLADAXen+7dTtN4eYeChHBUfHvxY0w8Ri9GO+FYbrdYqqrpsxeyeHi+gz85+lEDpVq07eeK82/86+lRKJokqyAAB3RU8hw6fk2GnrXAuaYf7imM9SsFNUybAf9oo+VO2V/Mzq/7AZ02eJM0UBAHwg15lCSge0k9RcdK67fsxgp6iuuKC6X2f6UK0rS/3O/nfNaKlh/WGfJXEAgPvh/xeZR3hziHMzBnR1ogGRpYlIqn2Kwg/XvtVmvSctjTVhIKnw32yCTtG12s17uMhK239V9TOrb45+0+cj2Ws/BQDA/eDfTgWYRRw1mCEAABRMIQAAALAGphAAAABYA1MIAAAArIEpBAAAANbAFAIAAABrYAoBAACANSyfQsZ+lTG7y/zdyG5Y1dW3/ULmt9V7HbJfAH7PLwZfZN8nVvqeii7Styer/JQ2bsouv/Tn4rN/Ff9958zyKeQx9CMhbjHVdFjVUil+1VM7Me+tf/Ze7XzhW+3V+3KdfZ/o5A1FXadvPyz0Uz2fp1htikzpwNpOvk6n2f/s+ixXmEIeK86UVU/Pt+W9Gp/xnl41hVyHuZV+T9+Ws+R8jmqz9O9+npdOEj2FbP8om7jIFPIoPp2iBQM6+/iu/qO1GUJErI9smPQZjXXzVs2U6u3GP8K+V/tW8iN0usWW6jqpv//Y1MnEnaT7sEPq/UdRWubfj8/0/Sqy+GZeR3+g3nh7LG1YR6wfEokU1f6Y6yJvhvaZ5dU63WIztZP+m8pOXfuVUh98/82v9jHxWuhkTWgGNP1bvGcKidU2vfo1iJaZIvqWqr4fP7hPOVku/6kaMGbW6/jZ/uHcewg7k7da5kX0dRY/u9PqqJYVG7fDuaVUciY7sC9dn7Oum+JndDLZUit8P9ktIq/2Wbp+MqzZDNZllnLtrZqpD8HxRrOuuf6b8c3+Z+unuN2fhTSDRZcdhazXvr4fP2v/mg/K2NM2YMysV2junR8uRF3VeLMPTpkX0ddZ/Ow63aHPmX62L4+wNYdbsni/Ci2efSX0hfmuyZJ4916/tP1FyZKz0sx7CI55mwzXW/WT3ejX2/U/Vlr079s+059uIq2TLUY/p7jIFFItSbTSlNK3VPX9+Cmbl+lX8w70rStuajptjOvb7mfAiddWu8zq80R9ncXPPrBl8VtnX8z++B5iaudGHXbSZHW/xpov/OhWdOsd9hnzap9dY9rhrP47ns3grC2ZH53XDx72b6Yo9X+/4rv6nytMIQPWRStNNaehcSVrtO/n+XFww6R+Ne9A37T4gJ9SXYcSZvXBKfMi+mLRTDqQLtOv7ovW33aM+deFZPp6xWzU9hvhdky/yb5wbWmuH51X+PTr7dou9S0u7kvw+6x9NjVfVNd0/2d87le6Zhosn0KqvrfAYd3RPETG7kf9zHAz/lW7lYiYfWjmFZXqvGa9TX2RVMQ3P3bjRclmsX5dr9BvhsXs2bpOLUR0fDSW+dyvO/ZK5kXeTER4zuoVBZr6om8ivum/WovjR+Rt2nbyNm1k5ftN6OoI/SyLdu74jH1o+nHq2pL+61b4/h/5I1FK2szr+/nF8inkFmSP2qeyJaz2BdO45oa+2tWL9C97PlzKDHw24w8bU4gJL2P4GK72ML/azxvqvVRLL2UGoANTCAAAAKyBKQQAAADWwBQCAAAAa2AKAQAAgDUwhQAAAMAa9lPI1f5adfRzWDnjdvvNSatLyMwvLGogdbbFpk4zfmtRKOME932cAAAW8JxCnqfnRY7RzM+UKURo3oVuf84XNaW3peDqvpi1v3l/7/g4AQCs4WcKudpb2Zk8zpiMgrd7bWSeZ9UyrOPfGCOr+5LFL3+e7/hEAQAsQE8hzdf//mO2mMU3pSLOvWcO+oOI6UfUpV970b9vPovPFPR6piOKcuqNt5h1ZYumlBnvWCr1x3Fo9gEA4KsZm0Ky63ivc0sk03zU3+JaP5bp3FLqT7y3GeN7fvxuQkyUrfvXmb0BHaecuBjbpUVEvOOnWpdTr9kHAICvJk4h+3eYPnn3PAX924Wrpubh+swpf3DuSDXjuwXqsKrVrCcxXos4ZoZ1zAK7+o5UN97v9qy+DaQGAPheDlOIONbNUzj7qnSIHwKa95455We9VLr9yaya5oVJp89jwSd1/H3J2uJL6XjfSXbLQN+GUwMAfCOH35ERx7pzHT/uifqCZ5jQb35VEu961jFOH8y+dZOanks+Z/mv1pW5dT5W46s2ztdb6gAAwFcT/9UycfTHwzcLFqdw9d0g3kPdt5Qj7twiIrOvmk3TUjp11MySDvjUt5R0YslOgU19kcKPL9kYqPdMUgCAb+cwhYh30hTuqAwAAAAv4T3/gvurhxsAAAC4H/x/ZAAAAGANTCEAAACwBqYQAAAAWANTCAAAAKyBKQQAAADWwBQCAAAAa2AKAQAAgDUwhQAAAMAS/gM7njNI2wi92QAAAABJRU5ErkJggg==" alt="" />
接下来,我们查看所以得表:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAARMAAAEyCAIAAABWO6N8AAAKWUlEQVR4nO3dUbbithIFUKabWWUoDO19ZL1eNLaFdFzIgPb+on2FLFdxcjvEim///vvvP//8cwOGSA4kJAcSkgMJyYGE5EBCciAhOZCQHEhIDiQkBxKSAwnJgYTkQEJyICE5kPgvOff7/X6//zn49MdA5wz3vx0d71zM0fihSdoztwfE8z+dpbYXt4oK1GqsZ7Tpl3lMzn9rLVn36Md9+5bHP3bOtjvsaP5RE5JzNFVheE5O8vIUQ4Pn1PNdnpIzP/FHCSlPTuE63+pNV/Hu9Y/OPyE57/0kv0zObpYejxz96L73D86j4/2vG4Y+c+3raq///PU2rqi94N239J93O0/jovpPfd/oXM9RKUrqeXS8xtO/5+wW93Ed2z82rmf3jI2ubF8PXXx/e9onHVrn0ZGhcwVTDZ3r9nebti963ts47+ja2qfrH9xTz3d5+Q3B/W9PY7YN2M7QM0//64bdYY2D2/U0TtpeT+f19lzU6PHg7X9ev1zbdlh23qc6NE69e+S+8fK8b9dOTuPy2ivuL9PL5r08V3tJ/QezdQ4N7rmooQUfaa/wz+uXa9sO6z9jY/72j9qDR88+VLcBn5Ococr2nLTzYM/rl+vpHNxzUS8nbxhdf9CXl6f+nHre/+/l4hP9f1u7baqzu6z7Ruc82wU0zrKrcdL2OhsX/vS6f6m713tySVkRtsvuWc/u4jtPfXTw6MXuUnfX3Jh/d5Gj1RvgHgJ+1Rtjc5McyEgOJCQHEpIDCcmBhORAQnIgITmQeErOe//jEVfT3zKSsxT9LfMnObv3C20POv6Nx4/6S87vnKXobxnJWYr+lvHdGiQkBxKSAwnJgYTkQEJyICE5kJAcSEgOJLJ7CEZvgmoMm3MnVcn859f5coavqAO324nkPA7uD1v20/POz/94sefDk/30PMkpc+a+tcLBn9/RqhVee6WfX+evUZ6c+4Oj40fvGp2nf5FP49uLacxzfv6jH41e7+j621fBsDPfELTbsPvJOHpj5+D2JP1LHZ2n/XEfWudQHY5+FNeBMm/9nRN/Yu4b2Qrb8w9N2HOxPZ/soTpsTxGvPxhMS21yqj4xL5cx+gkYWkz/GY/e+446SM5n+fzkvOMTE8yzOyxY50fVgVycnPuD3eOPsz292H44trO9nD9Y53Y9nZfcOOnuj47mP1OH3an669B/sXT5jXsIth+77CNSNQ+/7zeSA7NJDiQkBxKSAwnJgYTkQEJyICE5kPD/lV6K/paRnKXobxnPz1nh+FF/yfmdsxT9LSM5S9HfMr5bg4TkQEJyICE5kJAcSEgOJCQHEpIDCcmBhHsIlqK/ZSRnKfpbRnKWor9lyv/vuHwy/Spz/hsCzWBFJb9zJOdbaFaZM8+mHnoLn0CzykjOUjSrzPm/rQ29i2vpVBn3EEBCciAhOZCQHEhIDiQkBxKSA4lp90q7W+cTKH6ZOcl5mlb/rqLyZeYnx6+dC6l8mTn7c57u09G/q6h8mTn7cx6T0/kW+Ghz9uc8jZScq6h8mTm7DJ4Cpn9XUfkyM5MzehbKqXyZaftzhv52x5sofpnaewjuB6rmh0/h7htISA4kJAcSkgMJyYGE5EBi8rMMfEN9Lf+RoMzM5Gjb5bSgzMz9Odp2OS0oM/P5Odp2OS0oM/P5OdrG75j5/BzJuZwWlJn5FBBtu5wWlJGcpWhBmTn7c+4bJ5ZMTvHL2J8DCXffQEJyICE5kJAcSEgOJCQHEpc8P+cd89ND/ctc9RSQ8lPQQ/HLSM5SFL/MzP05o6egnOKXmbk/Z3QwfC77c5aiBWWm7TLQs0+gC2XmPz9H8y6k+GXsz1mK4pexPwcS7r6BhORAQnIgITmQkBxISA4k7M9ZivqXsctgKYpfZvIz2+acgiOKX8b+nKUofpn5z8/ROX7BzP05o6egnOKXmfkUkGw8hRS/jP05S1H8MnP259xOfKNAIfUvY38OJNx9AwnJgYTkQEJyICE5kJAcSLhXeimKX2ZycvwXnmspfpmZyfHfRi+n+GWm7c8ZulWHN1H8MnP25zyO0Tx+wZz9Ofc9+aJJqXwZ+3OWovhlJGcpil9m2v6cp3fp3yVUvoz9OZBw9w0kJAcSkgMJyYGE5EBCciAx8ykgvqe+nOKXmf/8HC6kEWUkZykaUWbO/hwN+xAaUWbm/hz/ksPv8PycpSh+GbsMlqL4ZTw/ZymKX8bzc5ai/mXsz4GEu28gITmQkBxISA4kJAcSkgOJS55l8Kb5eUn9y0xLjp59Al0oY3/OUjSijP05S9GIMvbnQGLm83NGT0E5xS9jl8FSFL+M5CxF8cvYn7MU9S9jfw4k3H0DCcmBhORAQnIgITmQkBxIXPX8HF9VX0Lly1yyy0D/rqLyZSRnKSpfZs7+nN33jr6L81S+zJz9OWfGwyea/PwcsbmW+peZ+fwcbbucFpSRnKVoQZlp+3OGJudNtKCM/TmQcPcNJCQHEpIDCcmBhORAQnIgMfkpIL6kvpb6l5m/y0DzLqT4ZSRnKYpfZubzc4Zu1eEdFL/MtP05/j2HnzL5+TnCcy3FL+MpIEtR/DKSsxTFL+P5OUtR/zL250DC3TeQkBxISA4kJAcSkgMJyYGE/TlLUf8ydhksRfHLSM5SFL/MzP05o6egnOKXuWR/jubx9Tw/ZynqX2bmU0BGB1NO/ct4fs5StKDM/P056UopoAVl7M+BhLtvICE5kJAcSEgOJCQHEpIDiWn7czJH6/F9d0bRynxpcto/4oiilfnw5DR80VI/h6KVqd2f07glZ/SWgqPx7k44Q9HKZN8QPDZgNyG34xQNNe9o8tF5oNj5e6V3f/QUmPtG5/Ikp5ailXlTcvrHD51Ick5StDLl+3NeJsfvnAspWpk3fUNwFJ5s/m1g7h7WG1GxMtfeQ7CNh9byHdx9AwnJgYTkQEJyICE5kJAcSEgOJCQHEt+7P4eA/paRnKXob5k/ydm9Bebo1hjHv+v4UX/J+Z2zFP0tIzlL0d8yvluDhORAQnIgITmQkBxISA4kJAcSkgMJyYHE9h6CpwHfdafTt6zz1vw/1vdcwtH4q25O+6LK13hMzvbit7cMTl3cuEsWGZxx9+N+9Mf+t4/OU+srPiFl/kvO0T+lvi458wVl6alzf3Iex4/OU26hD0n7d86jnqIcdfH2998ijubcbXxnJxrzn5+nc/6eU+wOeyray6mOxo/OM3q9PTN31uHrdSanvxzb5t32IrE77cvx/Wd/ea6Xbx9dc7bCp4Pby29Pct8LTDDPydcvL/AH9SQn+OwedfTodXtYv6d3BRPuDrtvtMefmb9nzqPxo/P0rGe0hlnjvs/L5BR+Mhqvjzp98uyjXe+Zpz0ymPz28EntnPNofPBB3x159MbOhfWc8euVf7e2O6wxz1PX4/O2J++cp2cNPes/s86jP/aMbw9rL+PM687T/ZTtd2vb6myPH2mMPPpRu+v9zdhdarvTQ5fQc2k963x619H6X85/NL4xT2MZ/dfbPv7ydL/DPQSQkBxISA4kJAcSkgMJyYGE5EBCciAhORD4HyWftueeGOKeAAAAAElFTkSuQmCC" alt="" />
紧接着,我们进行“增删改查”的具体操作。
a.添加数据
步骤:
a-1,先通过表:cre_id,产生一个id值,然后取模(模10),得到,0,1,2,3,4,5,6,7,8,9任意一值。
a-2,拼装数据表:a_n,其中n=0,1,2,3,4,5,6,7,8,9。
a-3,执行常规的插入操作。insert into a_n(...)values(...);
b.代码:
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Document</title>
</head>
<body>
<!-- <input type="text" value="">
<input type="button" id="insert" onclick="insert();" value="插入数据" />
<br/> --> <form action="insert.php" method="post" name="form1">
标题:<input type="text" name="title" value="" size="30"/><br/>
内容:<textarea name="content" id="" cols="30" rows="10"></textarea><br/><br/>
<input type="submit" value="提交" /> </form> </body>
<script>
// function insert(){
// // alert("aaaaaaaa");
// window.location.href="insert.php";
// } </script>
</html>
<?php
header("content-type:text/html;charset=utf-8");
// echo "aaaa";
$con = mysql_connect("localhost","root","root");
$db = mysql_select_db('fenbiao');
mysql_set_charset("utf-8"); // var_dump($con,$db);
// echo "aaa";
$sql_num_id = "select count(id) as num from cre_id"; $sql_insert = mysql_query($sql_num_id);
// var_dump($sql_insert);
$res = mysql_fetch_assoc($sql_insert);
// var_dump($res);
$curr_num = intval($res['num']);
// var_dump($curr_num);
$insert_num = $curr_num + 1; $cre_insert_id = "insert into cre_id(id)values($insert_num)";
$cre_query_id = mysql_query($cre_insert_id); $table_id = ($insert_num) % 10; $curr_table = "a_".$table_id; $sql_a_num = "select count(id) as sum from {$curr_table}"; // echo $sql_a_num;
// exit;
$sql_a_query = mysql_query($sql_a_num);
$sql_a_res = mysql_fetch_assoc($sql_a_query); $sql_a_sum = intval($sql_a_res['sum']); $sql_a_insert_id = $sql_a_sum + 1; $title = trim($_POST['title']);
$content = trim($_POST['content']); $sql_a_sql = "insert into {$curr_table}(id,sub,con)values($sql_a_insert_id,'{$title}','{$content}')";
$sql_a_query = mysql_query($sql_a_sql); if($cre_query_id > 0 && $sql_a_query > 0){
echo "<script>alert('插入成功!');</script>";
echo "<script>window.history.back();</script>";
}else{
echo "<script>alert('插入失败!');</script>";
echo "<script>window.history.back();</script>";
} ?>
几点注意:
对于表:cre_id,首先要查询该表总共的条数,当前id=总条数 + 1;
对于插入表:首先当前id模10,即(%10),拼接数据表:"a_"+"模10后的取值";
插入数据:首先要查询当前表的总数,当前表id= 当前表的总数 + 1,然后执行插入操作;
d.部分截图如下:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAj8AAAFSCAIAAACSTCl5AAAekElEQVR4nO3dUZLsKo6A4dxu76q3MfPkLUwvo1cxDyduho9BQhLIaeH/i4kbLowFBoxO9aSzPv/7n//++b//+b///vvf//7Xv/71AQDg4cheAIB6yF4AgHrIXgCAesheAIB62ux1HMdxHN8Klx8DjBGOv0nlxs5I9V1B9Mh6hXD8Sytr5yLQ6DNV6SeALFL2+rMvLNkjvCmnveT8ozFat5oU3+uG7CWFumHLXpV9F3RFDr5kHgEUpmSv+/8lLmWp5dlrYT9Tpd6Fq9HUCN75fWDSuvlJAeDLXt18di6RTh29XyCkcvuxwrXv6/el93/+fpU70jvcvWS+3cn+H41hP4ddGvbw41+HgX4qlV03C2AB5f/v1d0I/uhuBB/hGVaeailO99i1QUjdkHYx+7F+qlviaisQKtxWN8ja8Rk6BMb63Z6fzw773FYz9tlYGUAK16c2pI1D2izaCJY49mNFt5pS2PZHaVTvj/F+LTflLbdUk+5XusoyPrHuSb0yVlaCnOsMx7ytZumk9wYBLGbPXsrOpT/MSmXjKeUSY6Pewlg/XZUtN+XqsMQ1Wfb6SpyZHlquDQ9X9/j7X/uwSJPuumsAU56ZveyXGBs1FlqOh/0xVrbc1DC4ItzufP+/P9p762IfLqWf505auqqP2/EP+10AmBL7Xw4/zQ6lbBxthWGctgNKK11Ko3o/lRu/HNu72r3fyS7FBsFebumnpf/23hrNdEYZTEtvz0GkDvhuBkAY37UBzCN1AXcjewEA6iF7AQDqIXsBAOohewEA6iF7AQDqIXsBAOohewEA6iF7AQDqUbLXr17A5MXPPTCPABL3AbIXkjCPAO7OXkejW7i2/FftUr62nHmknHLKpX1gJX73QhLmEUDiPkD2QhLmEcBvshcAAA9F9gIA1EP2AgDUQ/YCANRD9gIA1EP2AgDUQ/YCANRD9gIA1EP2AgDUs/C7NqT63i+5Sno3O+u7tiBgtAHU+KYopf4TsldqZLQYbQA1speC7PVCjDaAp2ev40Qqz8he3eDnH7unvP1BzNr10y1kEoGH+0328rJnkSWk+MPsldclBHjnkUkE8Plk/v+9wruMvXK3JtnrIYwjLFUjewEbSHxIS2cvb7tsfHciewEgew2qGXc3Nr47Jc0jkwgU8vTsdTQu5YFo3na75edolwN2vWwL5/HgnyBATb/JXgAAPBTZCwBQD9kLAFAP2QsAUA/ZCwBQD9kLAFAP2QsAUA/ZCwBQD9kLAFDPPX/fy4UvUNgD8wjgN9+1QfbCDOYRwN3Z62h0C9eW/6pdyteWM4+UU065tA+sxO9eSMI8AkjcB8heSMI8AvhN9gIA4KHIXgCAesheAIB6yF4AgHrIXgCAesheAIB6yF4AgHrIXgCAesheAIB6bviuDW+QQt/RcOuXelXjGoTAoHUv0QvvnxRvuywebKbwN0UFgvxqlwlc0mavhfGrs8/jt2Ysgelx7HN0iWzvxrB7xnbD4wA8VsnsdZwELgy3GxDupHFnfOdmFMhek00M43izyCRvnHeuE+ytZPYKB/Huepd/rnYLL/WlQunUJZReKHXSHn8P3nmUytuz+njaG9InRT/VFkrxvfel9B8oJ3FVZ39qI6/r58jSriHtLJZdRqqvH9t3JaU/ryKN28Lx//y9EvQ47Y/2+udWYvcl9R/AVd3fvYa7yXkT+TS7Q3i3auPo13rjb8N+U1JN77gNW9Tn0dKuUv9w/jpuLwfqSlzVG2cve9hh/cltKBy/NPtN6TWVwbSMsxRqZj0YT7nua1gfqChxVdfNXt+aX3oEy67XLW/jD2Ouil+adx6VQu84r4oz0663P0ocoK7EVX3PZw5doQLttjuCsnHop+xdaqOtjV+d8aYC83UuvBzE4hjnq1t/JrglDlBa4pKu+10b50HJGKDq8QFgZ3Wz1yf/n6vV4wPAtkpnLwDAS5G9AAD1kL0AAPWQvQAA9ZC9AAD1pL6tHPtMXaz+Ib8SZKnvCr42zq4edb/e8X/avL9w/WAPies2+23lQKhAu5dLvj/qG5A9bHacLa3atRf2pOi8v3P9YA9kL98lwwje3Sc7zpbm73rVuHnjPG3e37l+sIeS2essKXsdfxtG0Ou3V2XH2Ztriz+E7xW0j7Pyo2UeLT1fNe96fXsc4PkSV+8Nn9pI6r20PelbjPc4Lw6+viNzGaXuiFnGvBvTNY958z68QWMc4O3qfse8sgt0I3jrZ8fZnv2uz1vzcHM/GpfKk3H0+t0K3nnXy439AUpIXL03fOYw6SrvbmLczoY9WRVne/a7du3yw8qHJ3vZ+7N83pVFa1nPQAmJq7fupza8T7tU/1dxtme/a6nmt9w7zjPz6K3P+gEUiau39N/3Oke+HCgbxyFsiN0tIzXO3oy3rI9P95R0iX1SlFM3zLve/8O8noHnS1y6fNcGAKAeshcAoB6yFwCgHrIXAKAeshcAoB6yFwCgHrIXAKCeXf++VwBv1azlGkz9fanzKalcb9oeP3wLAFq/ed9rstV2xwlcmHdJahx8pr9rI5xRpEQ1HweAV8nsdUb2eiHjYHqzlB72OFkbB0AA2Uur2e4y0tZjKWe3WuX+7PU9NZm9unEABPwmey2RlxKkHcq7c1nqI4/0T4dYuXQ8HwfAs9T93UvZZaQI3Q2L3SrJ/DwOQylZ6nvKG1+KAyAg8QnaMnt1C6X6lt0NAavmcbI8Iz4Ao5LZK5wVJne9VceYdPM8rooZuAUAksSHqPT7Xufg7WbUxhnWd7UOXWAepfkylktnV8UB4JX4BPFdGwCAesheAIB6yF4AgHrIXgCAesheAIB6yF4AgHrIXgCAem74rg1vEN6w2YN3HqWXq1a9dJX68tYNnVzSRHZ8KQ5vzr3Wb973WriUsy/BAy2c+oX/kMpYWt+wk/GHcR4eX4qzanxQUcnsdZwELgy3i4d4YfbKjrMqeyXFl+LwRL9ZyewVDmK/REqQ58L2oG0lnGihiM1jO0d6uRRnGL+7SGbi6/e1Kk52P+fjS3H0di3lqChxHu/5+15rY7aRvcfnH5U6uEFg7sLX6mugbcIeU4owH2ft+GTHn29Xig9c1f3d62i0l3ePv/89H3QfMMxwzaP9+GPbEIfxz3G61Yzxh+WTcYb9n2x3VfxwHHv/UVHiJFbPXnp59/j4e7fiCUkSmMeZY6ld767qjf+0ONn3G5iXbthA/1FR4iTukb28T5GxPmYkzeOqY6mH1eP8Kv4N44OKEifxns8cukLZK0vBpXa/P3bLeVTWCszjp7d5Bcql9fBp1kC3k674T4uTfb+W+t52jfFRUeIM7v1dGyx9ANjTxtlL+UcfAKC2jbMXAGBbZC8AQD1kLwBAPWQvAEA9ZC8AQD2pbyvHPvW35FOCbbtHw9K0vf+x+Nl++KnLyXYt4xmINhMkEOeH4w88QeL6z35bORDKW9kYYRi23WiUS5bE78ZZ6NvcTzbQyXlc2OdV4+CN89vxB56A7OWoKV2uhz1OhvVd7Urxh5fM++2mmTSPqT1ZG4ekBZTMXmcZ2eto6JdbspE9jr1dPX4b53yqvbaN8xFSo+UW9G5PMkYOj6dl0JRQGeNpqa/0TYoD1JW4nm/41EZe7/VdSdmS9O1Drx9rt3vhcHeT6p9b8fZfif8ry8ezHZ82jl5fasveH0v9tg/KgAD4S93vmJdqWnYBZZex7CbDHlriB/rf7Z4UPBB/LXvwyfG8VDvMyWDheAbG394uUFfiYr7hM4d5V+m7gxLKUq7EGfbQ2K63/8P6llOW8Vlich6lCt779ZbPjKer/ve/lwNgJ4kLe49PbUhtWY4tfb7Ud7Wr3Jq0cx1/ky6397N7SRt/LXtw13iG79dY7o0/0x/jfQF1JS7m0n/f69yK1LSlXDqr1F8SX4pzOWvvTDeyMpj62Umu4K7xdN2vt9wbP1z/0wyRcglQVOJ65rs2nuY82RkTnx0fAO5A9nqg7H+D8298AOWRvQAA9ZC9AAD1kL0AAPWQvQAA9ZC9AAD1bPn3vSyv2nQrK6dm+vNOxnGLjf9wHs8VunGUdl3xvf3PjgM8SuLKLP1dG9529d1BuZatIcA+aN7xH86jJaZUxxs/3P+8OMBzJK7Mun8hxXL5zC7A1jDJPmjhHVyZxz8/2utb5r0b/4FxgOe4rNKVSmev42R4+cwuhgDvPF6O5+dx2I1hu5b43v7fEAd4jsSNNPtTG8c/1obttqI3at+VLsfsC9lc4z+cx/YqaR6H2cIV39j/G+IAr7DN71763tRWtuwagc7jyzuP0lXheRz2p9tuIL53/WTHAZ7Dvg+41c1e0qPuPZZO6VsJhuyD5hp/4zzqwQPtKnf0tDjAcySu0rqfOZTie48/hp2CbSLAPmiu8ffu5gvnXbqjp8UBniNxlZZ+3+scvH3IlUddqnxpN9Z//GEcN+/4W+ZRaWLYrjd+rP95cYBHSVyifNcGAKAeshcAoB6yFwCgHrIXAKAeshcAoB6yFwCgHrIXAKCeG75rwxvE1e7CV170V20m4yypXEvqvAQqZ8/LqvUD7OQ373staTUQxLvFxFqxNB2Ob6y/vP+PsvCmVo1n9rysWj/ANkpmr+MkcOHamrGmw/G9u+SWfpi9suMYL9x7fgGLktkrHGQ+e0mJ01Ju2X1icaT6hhstKZAqlHHr1gnM18y8xOZdvnVgf4lPwT1/32ttzHNkfcvQtyHLsT1+rN3ubvgq3vHMnq/sOADW2Ph3L6n8sqFIx974wzj6hrgf493FskK3idi82Hu+Kj7wHolPwZbZq3t21W54W/zqjHfnHTfveCr1pcIl8z6MA7xB4lOwX/b61W64Kv42vPPozQpt/CXzlR0HeJXEp+Cezxy6QhkrK5H13e1PYbvpXMp/GH8P85MujWe3vmW+PsK8tJHn5337+QUsEh8BvmsDAFAP2QsAUA/ZCwBQD9kLAFAP2QsAUA/ZCwBQD9kLAFBP6tvKsVdebnhFxviKzw2v7ITH5/lvEf3kvvQgxnlf3u58/ew4QJLE9Zn9tnIg1KqnWo/f7ZvleKFv2NhGv7w/awU6uWrJdeMY533YhLfd+frZcYA8iYtzy+ylRDhO9AvD/V/Sz6QL7xTo5MIl1z1lmfdAfG+3V01fiWWAlyuZvc4ystd5M2ozTXe36ta3NN2N39bXG5VCGe+rvbVwu/ewt+i6r2G50pNhhc/culLuy95PPXjbpTYO8ByJq/SGT23k9f6yy+hPtV6hu8volT+jna57eXvtwviWdp8mcC/Kte146nHs4y91w9turL7SN2lwgM1t8B3zh7q5t5WVZ74t1EN95N2k7Yyxn3r89sJAu/cwtqgMyHB8LPXb8ZHqtJfo3fO2G6t/7omxP8BzJK7SGz5zmHeVazcJXBjYrZTK9t1nGN8VpG33HsYWh/eiTIpxvoYVZubd2O1w/cD6AZ4jcZWW/tSG5YEfbjfeYymspb4ljjd+oN17GBudmQvjeLraUuK45tEbPzCPP5lWwCVxlW75973OZy0XdkNJ/VfalU51dx+9sh7fFerzo23O3mjsvi71lXGTonUv0eO46nvj6/drHBzgURKXKN+1AQCoh+wFAKiH7AUAqIfsBQCoh+wFAKiH7AUAqIfsBQCoZ4+/7yW9B7O2/GjeK4rV1+PMDN2jGDsvjc/H8GqUEmcYPzb4w3a3iQ8skbiiSn/Xxrn+sK3zM//9Ue/qJdT5wmGc86luzEB/arH3XBofZSIuk65cq4QatuVtd7P4wLzEFVX3L6ScK9sfv+5Z48PviqOUtxuKXrnobmLveXd8LJOijJVeTakz2e5O8YF5l9W1UunsNXxijcGND7w3zrC8Gydxsu8VmMePsDUrlZVxHs5jt858u9vEB+ZJC3KB7E9tHP9YG/Yz2qqkdpXC9hIlVF6cxMl+quG4tZXbY+WUHl+p72p3v/jAo9X93evoGYbSq+m7gz3Opb4rznAbqsLec2V82jjKpLdDp8eX6ky2u018YF67Mpepm70slwwf6bZQ3xHscSzllh4mzn0ye8/Dk6LvwsN57NaZbHen+MC8xNW1wWcOlbbaUN3g9ofcHudcX7kjV39qsfc8PCntgB+j36G7TXjbekl8YF7i6trgfa+2Fandbnn32ktlS3ypvjIIxlPt2RKMPfeOT3eyPvKISfGVEQ63u1N8YInEpcV3bQAA6iF7AQDqIXsBAOohewEA6iF7AQDqIXsBAOohewEA6rnhuza8QYztHo3uKemSYdPZ8bfnuln7eLbzcvTez5Pqh+NI/QncLPAeiY9GdvYKBDFeIlU7l1uOLxfqdRbG3579Zi+Zo738EmpYTao/E2fYn1dNLmCU+Fxkf1NUIIjxEqmassso17a9zY6/PfvNdmsOs8X5R/0Sy/EwTiAggMSHYr/fvSx1pN3QuxPNxN+e/Wa7NZXLL9MklXuP9TiWuX7V/AIWiQ/FPX/fa23Mc+QvY9NtfX1ry4uPP5RxlgZfukSfSuk4sCTazrTHAHLV/d1Lv0QPomxhynaZF39L9ju1D2ZbckxnL3ucbsk7JxcwSnwotsxewwhSBWP58vhbst9st6aSQizD6z0expkJCLxW4kNRN3vNbFUZ2583/vbsN9utqYzncHil+jNxZuYdeK3Eh+Kezxy6Qnl3ve6WNDxliZYdf2/GO1WGxTXIlkmZiaP3x3XLwHskPhR81wYAoB6yFwCgHrIXAKAeshcAoB6yFwCgHrIXAKAeshcAoJ7Ut5WVV3mGV820e2k9XN/13g8uYvO+aslZurRwHucX2z3tAjf7zftek62eLw882OF2Z0JJfbYc4yIwOKuWXDfOZaOPzWO3mt7ufP3sOEAesteCPszUJ3sF/DB7Sacs8xuIv2qZebH88Hwls9dZUvaStqTjb+H6wy4Z479TbB6982Vp8Vtumcdz5G651E/9vuz91IO3XWrjAM+RuEpv+NRGUu+lx9jyeNvrd3efbmW2lZi186jv/sb5/ZZczna74W03Vl/pmzQ4wObqfse8VHP45CtbktR0Wy6VsKF8GQfBslN3L2nHWVkP+tRI60TvnrfdWP1zT4z9AZ4jcZXe8JnD7KuUrWHm2NhEuNvbMw7IcPyN82tpcWZ+veVKZ1z1v+Xf/w6XK/Aciau07qc2pPhPO36tm+fR0uJknG+5pb43vqW+936Bn0tcpfv9fa9z+ae3KQTK2y1jeMp4sxsLzOPHMP5S/eHgtxUCk+iq742v369xcIBHSVyifNcGAKAeshcAoB6yFwCgHrIXAKAeshcAoB6yFwCgHrIXAKCeun/f6/ibJcjw/Zvuezb2+DiLzaM0NdIlw6ZfGL8bB/iJxEVY97s2zjUtT7XSn26cYX22Bp1xfKRqlrnoXnuZmrfFl+IAP5G4CDf4CymX48CusSoOzoyDE96du+XHyW/jW9rKiC/FAX4icRG+M3t54wwro2UcnNju3C0froGXxB+uYeA2iYsw+1Mbxz/Whj0HvxwrT77UGemSbn3vzgLd8TepgnRVt1p3En8S397uqvhSHGA3u/7uNXzgh3Gk+sP4+CMwOMPBV+q38+Kd+oz49nZXxbfEAW6TuAJ3zV5KhbaJVXFwFhgcZV5cTRjLs+M/rV3gfomLcL/PHHqPF8bBmXFwZsbcsmu/Lb4UB/iJxEW43/teylOt1O/20xsfZ/bBsczLcB6Vsz+JH2h3SXzjWeAeiSuQ79oAANRD9gIA1EP2AgDUQ/YCANRD9gIA1EP2AgDUQ/YCANRzw3dteIMY25Vemmnfp2nPWuIMO8PLNDrX4NjfZ5Lm17gewnGk/ug3K9XXT7noXZ0MfkN87C1xnWRnr0AQ+yWXHacboT2WHkUpjtIfHmDF5DxKx5ZqUv2ZOMP+2NdVtwMzjPf72PjYWOIiyf6mqEAQ+yX2zWVYoT2l1A909YVi89gtVObrc/rl3rIehutEqhMLqI/AqvXjbfdp8bGxxNWyx+9e+rFeQTo1rP9lvrN3ic2j5fLu/Lbl3mM9jtQf47pqL2nXj7SoLOXedu+MjzdLXA/3/H2vtTG7wdvjy4MkHUunLNfyoM6TtsjzKeMl3imLxel2cj64PeYT2o3FB1Z62+9e9gdPqs9TahSbR8vZ7vy25d7jYZxuiXFdWYKvjfNp6OWXdhfGx5slrorts9ewsnTKEpzHVRGbx25hYPecmb5V68F1X8OOKcGN4+OKsyo+Xi5xPeyRvWZ2DSlO4KnGWWAepULj7jlcDzNxAuvBdV+rjrPb9cbHyyUuhns+c+gKZawsBZda1J9MKU63S+fKPKiSwDxaTunzq9efiaP3RzrW70u6xBiqW9/SriXOwvh4s8T1wHdtAADqIXsBAOohewEA6iF7AQDqIXsBAOohewEA6iF7AQDqSX1bOfb+R6DdyyXD91qM8fX6vO+ii837/NA9LQ7wZr9532uy1fPlrlCTu5732NINKRHa679QYBBWjdvT4gCvRfYaVJYuycheeouBW9gV2QtAyex1lpS9vjUt2UspHyak9hTZa8g7j+0USPNiKX9CHACJz8UNn9pI6v05rLKhDPujx3EV6u2iazj+Sh3L8a/iAMhV9zvmj55hKKlECmLZv8K3sDfXPHYvkeZlONdPiAPgU/d/OYxFCFxlzDHD3WrJqeHZlzAOgpQtlCzSLXxaHACfotlr+LRbLpxsK+PYUsJG9knLXlWOAXxKZ68z14WxhqQSvT+u+t44r2Ufh/OgdYdaKr/Ef1ocAInPBd+1AQCoh+wFAKiH7AUAqIfsBQCoh+wFAKiH7AUAqIfsBQCoh7/vNdk0JLF5V169Wt6lmfWZ109v/LVDBKyVuDg3+K6Ny9PrPZbiYFJgMLvZJRZKCm5fD7/qZyA+6xaPlbg4S/+FlM9pSxo+1fpupcdBQGAwpV17VWdW7f55/YzFZ93ischeg5reXUnaHdgFFvLOY5td9Olrz+rlw4BtnE/vHz2T/VR+nInfrQD8XOLizP7URt6j1T72xnaH28fyrkIhjb9lK7dMsXedWK6d6adULWMcgJ3V/d3r6BmGkkr0OAhwzWP3EimCXn6ZRO868R5L/ZEa/R4ffyetWHx9QICfS1ycdbOX5RLLLjDZNCTGwfTu2tJZy25uKfceS2GHbR1kL7xA4uLc4DOHSlvG3WemaUiMg7lq1/bO76pjbz/PPybFB54jcXFu8L5X20q33aOxpLeQ2EfyPOyXA9dMdeMoVw3jSEtoST/bTobjd+8XeILElcl3bQASUgLwXGQvoEv5pQfA75G9AAD1kL0AAPWQvQAA9ZC9AAD1kL0AAPXc8F0b3iCBdqX3Zrrv2czHh4Vr0OzzdfS05VL9cBypP/rNSvX1Uy56l6RbmGyU+DBKHM/s7BUI4r3ksuC8x974MLIP2remcb6G1aT6M3GG/WnvV2q324EZxvjD/ky2S3y0Egcz+5uiAkFcl7StSMexJsJ3Ae8gK4XSLvP9Ub/EuDz0OrGA+gisWlfGdb58GRMfQ4mjWvp3r+7OYgnV7jjdOMP4UATm0Xj5Zfqkcu+xHse+loa3cPytWy7V98bx9me+3ffEh0XiuN3z973Wxmwjd1tRCrur+XJ2GB9LSFvJR5gs5RJpyvRjbxxp8UwGt8dce7Nr282+32fGx2/U/d3r6DEG6VY+/k5aenwM2UfMNVmfZkORyr3HwzjdEu8iVIIviTOM/2ms7b8U39huofiwSBy9utlLuWQYYbI+LOyD1q05uct4j4dxAgFd9zXsmBI8oz/edqXLs/v/q/gwShy3/bLX8lUb6xLsg9atGZivb7lUfybOqnU1E/PJ/XlbfBglDto9nzl0hfK2e2lCaddeqMSHkXHElOF1zZdl0mfi6P2RjvX7ki4xhnLFmemPpV1L/Oz+3xwfFonjxndtAADqIXsBAOohewEA6iF7AQDqIXsBAOohewEA6iF7AQDqSX1bOfaehLH+0RiGGr4XIgUxtuuKM6zf9r+WhZ13jfMqNzQBbC/xIcp+WzkQylh5WO2y+3iP7SXzcboxq++eqzpvnMcMpccfeILEh2jX7HWc2PvWHlvykCW+Hkc6W3r3XNJ5+zxmKD3+wBMkPkTZ33MYCGWsrFT7nvLuepZc5c1elqsuZ4f9L8E1j937dc2jFEeK+ZFT4/G3YRwAksQn5YZPbST1vrvFfNSd6/P3Hmfpp3FrG8ZXBsHV/y19b/M8eoF5HMZp67TxLcfdLgG41a7fMX8xbEJqVO+M/SpvTb3/Jdh7fr7Ny4FrHpU4fw70+G3M7vElDgBF4pNyw2cOb7hKusRYrrSod8bebrfm8E5Lb5H2zofHwTKPUtaxxOwe65cDOEt8Uvb41EZ4JxrG0Usy4uhXFWLv/LCmcZyHwzi5HrpxACgSH5bSf99LD96e7daX+qn0X2p3VXzL3T2fsefD29SHzhLnW+idx4+QzOpOCnCzxIeF79oAANRD9gIA1EP2AgDUQ/YCAJTz/zNpf+fVrJgXAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAaAAAACNCAIAAAB+ETlSAAAJhUlEQVR4nO3dUXLcOA6AYV03t8o1Zp90hZ1j5BT74FqX0iRAAARpCfq/mkrJbAqESAp20i3P8Z9//3z9989///z+/fvXr18HANRAgQNQFgUOQFkUOABlUeAAlEWBA1AWBQ5AWRQ4AGVR4ACURYEDUFZb4M7zPM/zu8PHlwHGCOffpHZjMlJ/VxA9st4hHP9jlNy1CAx6T0/J8ziORyRZllTgvlYlZRt5q1J7yvVLY7RuNym+14YCJ4XacFdnFeiEVOTgKeu4wf0zLE4pcPu/n0uFLL3AJea51NKrcA26NIJ3fR9RNfTbZ/Od9V6uAtdds2uL9NLZ+zFEarcfK7rdhrtNSl7Jf/56lSvSE+6eMj/uZP5nY5jnMKVhhod/Hwby9F6UlOpHtlhI+Te47l750t0rh7BsykJKcbrHrj0hpSFtdPux/lK3xTVWIFR4rG6Q3PkZOgXG/t3Mr68Oc267GXPO7YklXG8ySHtL2k9tBEsc+7Gi201pbPNRBtXzMV6v5aK87ZZu0vVKZ1nmJ5aelJWxsxLk2mc45203S5LGCwxMBTLZC5yyufVVVDobX1JOMQ7qbYzl6epsuShXwhLXYtn7K3FmMrScG56u7vH3n/ZpsV+gnqprlhBxzwJnP8U4qLHRcjzMx9jZclHD4IrwuPP5f39pz9bFPl1KntckLala1sub6orJwV9if0U9mk2s7K22wzBOm4AySpcyqJ6ncuEfx/ZUu9c7mVJsEuztljwt+duzNZpJRplMS7bXIMP+0mS6RsQsnmQAZrSFzF4rd+T3chQ4AGVR4ACURYEDUBYFDkBZFDgAZVHgAJRFgQNQFgUOQFlKgfupzyLyGch7Yl2wU85+o8DBiHXBTgsLXPe5E+l5lKz2nxqXdr2ddaF9Z7u034L4CQ5GrAt2ytlvFDgYsS7YaXmBA4Bno8ABKIsCB6AsChyAsihwAMqiwAEoiwIHoCwKHICyKHAAykp8kkHq732gbNEn5hOea3s3Zg873e5RLaX/HQrc0shvwOxhp9sVOAUFrgBmDzvdqMCdF1L7igLXDX79svuSNx98yd0P3UYWBd+WF7jJhJRCk0KKPyxw61LC4V8XFgULrfs3uPDGtXfu9qTALWKcMakbBQ4uOZvh0QXOOy730gwKHHZ6e4EL3DDcSzMWrQuLgq4bFbiz8dEeiOYdt9t+jfZxwI3klbguJ991MLK8wAHAs1HgAJRFgQNQFgUOQFkUOABlUeAAlEWBA1AWBQ5AWRQ4AGXt+X1wLnyc/Z5YF+y0/EkGChyuWBfstLDAnY1uY277T41Lu97OutC+s13ab0H8BAcj1gU75ew3ChyMWBfstLzAAcCzUeAAlEWBA1AWBQ5AWRQ4AGVR4ACURYEDUBYFDkBZFDgAZW14ksEbhE/M35N3XaQHCRMeMEyNszS4EidliNXxpThLJ/86xGyU1QUuEIQCd0+JS5n4vXPFVvkOOxl/GOfm8aU4WfPjGjRoXYE7LwInhsfFIi8scKvjZBW4RfGlOHvu0LsXuHAQ+ylSDb02tgftKOFa/CqxdWnnXG+X4gzjdxd9Jr5+XVlxVuc5H1+Ko49radd5+/etfpMhJ8tRZO/x9UulDwICaxE+V1/Tdgh7TCnCfJzc+Vkdf35cKf4mz/0J7my0p3ePv/+8HnTXDFeudbEfH7Z7Zhj/GqfbzRh/2D4ZZ5j/5LhZ8cNx7PnrXJ1FTy9wenv3+Pz7BsiZxxcIrMvMsTSu98bzxr9bnNXXG1iXbthA/jpXZ1GNAuddGGN/XC1al6xjKcOnx/mp+BvmR+fqLNrzLuqiC5OCS+N+f9ltz5nQugLrcvT2d6BdWt+jWdNukq74d4uz+not/b3jGuPr7D01tZ9kyJkjAA9VuMAp32oAvELhAgfg7ShwAMqiwAEoiwIHoCwKHICyln7QN/Y+Zsr7nu24Z8MytD3/WPzVEt9HnoxjmZ9AtJkggTiJ8wldzjyv/qBvIJS3szHCMGy7d5VTUuJ34yT6Hi6xFtg7z5xuzCRrixrj5M4ndBQ4XyHTw54Xw/6ucaX4w1Pm5cZftC5LM8mNQ13b6e4F7mpFgTsb+umWgmWPYx9Xj9/Gub7UntvGOYTqabkEPW3pKizdAvNjmQQl1Ir5sfRXcpPiwCJn3ja8ybBugfWNruxyfUfq/WPjdk8c3jBS/+so3vyV+FnS56e93jaO3l8ay56PpX+bgzIh2OG5v01E6mnZWMrGtWzQYYaW+IH8u+lJwQPxdfbOk/Pz0e0014vE+QnMp31cWORM2oZ3UdedpW84JZSlXYkzzNA4rjf/YX/LS5b5sUeL9TTmMLN8lmRy+3//+XGAmJwJrPEmgzSW5diS80d/17jKpUk3w/k36XR7nt1T2vg6e2fX/ITzN7Z748/kY7wuWORM2qN/H9x1FGloS7v0qtI/Jb4U5+NVezLdyMpk6q/OdzbOjyt/b7s3frj/0UyRcgqGcuaNJxnu5rquK+6N1fGBG6HA3dDq7/z8ZIG3oMABKIsCB6AsChyAsihwAMqiwAEoq+Tvg7N8ZKnbWXlpJp8ajPMQm8/hulw7dOMo47rie/NfHee1cmbg0U8yeMfVN5xyLrvtWPYkw2FYF0tMqY83fjj/dXHeKWcGnvvrkiynz2wsdtsH+ySEb3JlXb6+tPe3rGM3/g3jvNPHbAQ9usCdF8PTZ24MHKkFbti5+9IwjeG4lvje/DfEeaecG3D1mwzn/+WG7Y6iD2rf6B/HbDUv13wO16U9S1qXYUFxxTfmvyEO4sr8BKdv97azZSMGki/Muy7SWeF1GebTHTcQ37sfVsd5J/t+0zy3wEm7x3ssvaTvzheyT4JrPo3rogcPjKtc0d3ivFPObDz3XVQpvvf4MGw+dt4RKnBZ6yKlMbmO0hXdLc475czGoz8Hdw3e7htl90idP8aN5V+VcR6882lZF2WI4bje+LH818V5rZyp4EkGAGVR4ACURYEDUBYFDkBZFDgAZVHgAJRFgQNQFgUOQFkUOABl7XkW1YUPc98T64Kdlj/JQIHDFeuCnRYWuLPRbcxt/6lxadfbWRfad7ZL+y2In+BgxLpgp5z9RoGDEeuCnZYXOAB4NgocgLIocADKosABKIsCB6AsChyAsihwAMqiwAEoiwIHoKzhs6g/neDYU/I8hP/Rr32qpf5pD+45PWjm8VJtgbvu2kfs4B9JMjBitypJX9pP98bJ9YgdgvfS/4rK9u0KTEt7SvuNxF7grv29cdKxSXBb/wOv1+9wqTNDdgAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXEAAACeCAIAAABLgK0QAAAKkElEQVR4nO2dXbLcKAxGvd3sKtuYefIWZpaRVcxDKl0eg4QkBG7wOQ8pNy0+CYG/uj/um+Pvf3/99c+vnz9//vjx4wAA6ARPAYBM8BQAyARPAYBM8BQAyARPAYBM8BQAyARPAYBM8BQAyARPAYBMrp5ynud5np+3bi8DGBXO/yONG4uR4l0iurIeENa/Zcndi0DS72SJOhfqZz6lp/zuQkpHvEZQTrm+NKpVwyR9LxM8RZKacECzPDGhFFk8ZR+HEji0W1H1lPkuK21Duqck1jmUoatwJR2q4N3fJW5RfVGT76wHMHpK1WWuI9JbUkOr4/ZrhWqYNFdfl15//3qVFekFV6f05+2s/yxo1tksqVnh4T+HgTq9i1IKjumsRPXnKdXt+U11ew6hU0rvJJ3qtWsblF10JXXVKY24cgWkwrmqIrn9aXIKGOOrlV/fbdZchhlrHhG8D8af0UrbKW1hqWDRsV8rVMOUwbIeJalej3G9lkV5xy1h0nqlWZb+xMqTqjIGKyLXmGbPyzBLkcYFBlqxCRZPUc6T3jgl2PiWMsWY1DsYq9MVbFmUq2AJ12bZ4xWdngotc8Ptql5//rW3xbjAZotcXVqMb/MU+xRjUuOg5bpZjzHYsqimuEI4b3/9n5f2al3Y26XUeS3SUqplv+zx5x90kYXxfu9zFOdG2c4yoKlTFqBkqaIk1etUFn67tpdaXW9nSbEm2MctdVrqt1drpKcYpZmWaq8izXipma6MC8NztAAxSu+w29OM+p4CTwGATPAUAMgETwGATPAUAMgETwGATPAUAMgETwGATPAUAMik6ilPPZaz/+NA3w3935tJ+4unwAf6vzfPeEr1QWPpAeSs8afyMn7S/xeMS/s7Cr5OgQ/0f28m7S+eAh/o/9486SkAAEHwFADIBE8BgEzwFADIBE8BgEzwFADIBE8BgEzwFADIBE8BgExSnqOV4r0fLhj0nN+MzzhsAV3am5WezVfiv8FThirvBF3am5U8RQFPWQi6tDdreMp5QRof4SlV8evL6lveet5G7r5XB2n+gzzpKV7s93YKkn7TU8aV9Cq8/af572LEz1PCZ8geXI3EUzoxdkYKw1O+nEnNX9RTvHk51hbwlL3BU0xhxrPLsbYwqP80/0tYw1POgtt4QM2btzp+VbtdcKYlEvt/Yujfx5OeAgAQBE8BgEzwFADIBE8BgEzwFADIBE8BgEzwFADIBE8BgEzwFADIhP8vGT7Q/7158jlaPOWd0P+9ecZTzoLqYO74U3kZP+n/C8al/R0FX6fAB/q/N5P2F0+BD/R/b570FACAIHgKAGSCpwBAJngKAGSCpwBAJngKAGSCpwBAJngKAGSCpwBAJkOfo/WKuPImfnKhKhXQd02Z8ckLJ0P7GQge3c+sfV+FJ5+jTckdEPEeoFgWS+qwvjE+vf4UEovJ6sPofmbt+xIs7CnnhcDE3MhY6rC+9x74Kh70lNE6xonfuS9ZLOwpYZF+T5HszDJuOVsxHSnesNCpBG5gZb3VmECfe/oZ2y956WszaXXjfkY7bgGWA6EfMsu1XT+Wt3rWl8Dbh9F9Hq0DPrb8OkUavx0X6dqr39TRj/v3YKwqdq9WU8T6aa88S38PJq1uM0+pvpt11qfpP4WxKu96vX1Q4qXBlP1q6qzOpNXt5ClPnfUs/cfx9t97r5b6KX0erbMNk1Y3+vc+LiljsKKsn93fg+WRuo0/qP8s/Zsl9aEab+nzIfSzVO7fr6/dlywmLY3naAEgEzwFADLBUwAgEzwFADLBUwAgEzwFADLBUwAgk0HPvMV+1T/h9+fGRxsmPKoQ7s/okibXo4sY9ys9b3/8aJ1w6uFpxj3zFpDK2jNdv1qb5TqRj2zsNk6vJyyedVSqOsb9aqbw5u2PH63TmX0sm3mKonBe0CeG60+pc9DEQeKJR6X6lmW/AvresrPa/oiVzM4++v9gH+Ep16NW3v/Vs1iNt6Su6pfxelJJyriucmnhvDreSGM9zXGlkmbA0XcelHXZ69TFy5JKnTlMyj70Z7Tj1nA7Q/qe6QHVM6QHH61zXJ1ezk3Ut+TNIlCDMrfsg65j75tUhjdvLF6pTWrOJiz9ueRTveXKYGVHy0Fd6pDPSlmMsU5dv5wYyKtjjFQW0lyXJb5clxRTTtHL8+aNxV8rMdYzh0nZh/7eZ9ws11kJTAycRSXYfraa+i6RMq+OMbJZg9JMY5+bAT37ZSw7HB/Y9zlMyr7oz2gt29k8TN5rSdYSb9Hx6gfy6hiDe3po7IMrl6Lj6r9XP9B/13akMyn7Zn8/5fquZWJVSqpfySu9VT1berCu75I6nFtpD47Vc4tX1iupVafoOq54r76+XmNzpjEpNc/RAkAmeAoAZIKnAEAmeAoAZIKnAEAmeAoAZIKnAEAmq//9FOn3/7njZ/E8RSxe1+lpXQrGpNK6DsOjHIpOUz/WtGbebfSb2CO7WPQ52mt8M9d1Rz8v9VJvUteJTZ3rW1XNQD1ziJ3O60KUBt42S5mrSDVzefNupq9jj+xixb91cA22N7f6rnFrXTrKeHlc9OAZJ0AuwB55mu8TZY16mBLTmXcnfZ3brFEs6inN/TCKG7fTq9Mcr+pM2nKZQP8P4YZRgpX+NPtfjenPu42+jpQomXE/oz3/kCt7tA6ilFcZLKcoUuN0Jm15Bs31lsHltfKWrq/Eu/Lup/8VrPh1ylmjKaWH6Xtv17nFu3Sah2w09ozKukodZbPKJev6Ukxn3m30dcqMQ1jRUyxTmhtWDur7bdexjFsqnHQC1JJckZZm6vdGs//VmM68O+nrxGa5Wfr3PkquUqoqbt9Cu841XlmRq5452DOGm1k26mx9nVhN4c31En2d2Cw3Sz+fUmaR8lbHq3NvwRZ9KV5pgvGt8t2hGDN611Vt8iGvVNJXOhPOu5N+k8CUCDxHCwCZ4CkAkAmeAgCZ4CkAkAmeAgCZ4CkAkAmeAgCZ4CkAkAmeAgCZjP68j4un8sJv6P/ePPkcLZ7yTuj/3jzjKWdBdTB3/Km8jJ/0/wXj0v6Ogq9T4AP935tJ+4unwAf6vzdPegoAQBA8BQAywVMAIBM8BQAywVMAIBM8BQAywVMAIBM8BQAywVMAIBPl8z5Pl9ZmlToP4f98srdaip/3IY5aPdPSwUpcPeV6UJY4NI8UGchYNQLppX26VyeXJU4IPID0vQ8npkqgLeWU0rvtnnKN9+qkwyGBCj2eIp3vQ/geSnlZjbeklpL26Bj1LSmqYbemNaWkeK+Od70WZWMf4EWUnmK/YY7asT5qZlFel3OrMcbszVzN6d6aYxXeBsvl6yJnzUoCOp3XzQXCq+n83uf8w2HwCOUeiB3N26yAYDXsLNDje/QtmlK8V8dSj7eHsY2DnUnxFGWwei3dA513rPd+sOjokQHx43IPGzWl+IAFVCOlicbCLBnhRXT+3qcapujc7odmvCu7V8dSg6X+njqll5Z4PUwvo+famA5eSs/zKUqw9JZ+P9iP6Vlw+D2lWae+NEudt1lS/U19KV7RUcqwr1cfb6aDN8JztACQCZ4CAJngKQCQCZ4CAJngKQCQCZ4CAJngKQCQCZ4CAJngKQCQCZ4CAJngKQCQyH/zWrpYqyz8owAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAATMAAACfCAIAAAAak6koAAAJnElEQVR4nO2dUZYbKQxFvd3sKkuppc1HJk65QOJJBbZw3/uRU8biSQhed8dNZh6/f//+9evXAwBKgTMBKoIzASqCMwEqgjMBKoIzASqCMwEqgjMBKoIzASqCMwEqgjMBKvLHmcdxHMfxHLy8TCAqHK9Y42IxVnxIxFf2A9L6lyxz9yKRtCZb1Dmtn2dn/tGaohu1Uzvl/FJU64ZZ+lHe4ExL6g3HcdZXlgml2OJT9nEpiUNrcnHmNMfLWIuZ7syJdS5l6SpCSZcqRPe3siG7WF9h1VUMndn16nnEessqqzuuPzt0w6y5/rr8+u+v11mRX3B3yv28N+s/GoZ1DksaVviIn8NEndFFOQXHdC5/z+wuspvp0pFuEUrF55ftc2gxTi9CSUN1WiOhXAmpdK6uyNz+DDkMxPhu5ed3hzW3YWLNodWJyn2GnwBZTbEa0SooOvqzQzfMGWzrcZL69YjrVRYVHVfCrPVas5T+5MqzqhKDHZFzzLDnbZhSZGiBiYa84DvT2RU/sRMsvuVMEZNGB3N1hoKVRYUKtghtlh7v6NypUJmbblf3+fmn3pabW/AcUUXqOFOfIiYVB5XnYT1isLKoobhDOu/9+p8v9WpD6O1y6jwXqZSq7Jcef/zFF/kf/afZR9N9pyltwFCnLcDJ0sVJ6tfpLPzyrJfaXe/NknJN0MeVOpX69WpF7hTjNFOp9iwSiu9GBvrDHSCAKO2XM920ag6cCVARnAlQEZwJUBGcCVARnAlQEZwJUBGcCVARnAlQkYszF93hGPKpvNWgD3uxcL9wZinow168w5ndq0bWFaRZ45/KW22cPuw1bu3XTPieWQr6sBcL9wtnloI+7MX7nAkAJcCZABXBmQAVwZkAFcGZABXBmQAVwZkAFcGZABXBmQAVuXkHyIqPXiZcdJdi1Z3GZexVLdS9nefEV3DmUuUV7FUt1HWmA85MsFe1UNGZxwlrfIUzu+Lnl923ovV8irn97w7Wb8JGvM+ZUXSHTMHSHzpzXUkfIdqHr2zClzP375npE6AHdyO/xplihVYYznwzC5u5nTOjefc6lDhzL3DmQP8nO/POM9ykojOPhst4Qi2atzt+Vrs81D+RE/twbPvlaSPe50wAKAHOBKgIzgSoCM4EqAjOBKgIzgSoCM4EqAjOBKgIzgSoCP9fk1LQh7143x0gnPlZ6MNevMOZR0N3cO74p/JWG6cPe41b+zUTvmeWgj7sxcL9wpmloA978T5nAkAJcCZARXAmQEVwJkBFcCZARXAmQEVwJkBFcCZARXAmQEUW3QGKioh5ncuK1g3G4c1G8TLkFH1xgaFgpZ52XUfvXqgVn9ax6kkstiYLl7DCmQkRcYoVdh5Xni8T/ZiJ+kP04IsrhvUMw6z4OzrDekLNKcjC+uc6M91ucYoV5pwAZ25b7Wr9IXpwN3LohPNLf4ryPNRJCO7FwuK/43umEmOd1OgpuaM/RA/uRjrTL8u0xqPPvo7Sq1B/qrGw+BWfAK0r93hFTN3G+8dunf4snDqt4q0pfius50RL22LaZ/jHXt8z/Sm+iHO8nKO8Tl9cVC5yaAan7NDzUKc7kmtOQRYW/zXOHCpYAeL4dP2QiBjp2EMpL/o81LkjuAULi9/LmXeO0YqjGdUPLTAR6dQzLM+Kv6Nzp29bsLD4dZ/NLj2R3eMyfEtRW62vrE4M6waHilQWdUfHrye05JosLJ47QAAVwZkAFcGZABXBmQAVwZkAFcGZABXBmQAVmX7TwPlV23DWnbyX7On40O/lppPr26wtU0qa2If7m/WevEOp+zodVtw0SEhNXGHucOeep5MQn7VlXZ3LIc71oRvm570fv1rnojYfnGnF/zRnWm8p/Unoz9qmKHO3bxtnnlnkTOu4HK+k44clifo5cn2IrlfJ+BxX+nBW7o5bdfrr0uv0xduSWp0cc9VeWPQJ0KKKrRYrrdfjuyejG7xuy33m9sE/2WJ/niOXd7tlRPPm4p3arOYUYq9/a2JFDnfFOS5W6nbcGpm42aKIcgq7U9o6nX76S7P67JcXzZuLP1ci1pNjrtoLiz6bXT3L2bY7z2KKdNlDRMFh/WJ/lIx3+hMdd4oJxT/Hn38OtzvH9APwj70+AbL0qz2neXMflIw3dZ7jSnxUX4mPrjfEXLUXvuPfZ57HH70NS4y32zl8S1zscHV6pFi/FT8svg1INCEUH9X31ys2J81EqSvcAQKoCM4EqAjOBKgIzgSoCM4EqAjOBKgIzgSoyF7/PvN4RREZ/n6s+3swXX8uuT5YS7OmDFP/QP2uzpBQcIy97gCdI5WOO/V0dYbxC3eilzQapqylO/eytJ+mb+kMCQXH2PRfgV2eEzs6S2cuonj65HXHjxOf1VdyrdC3dIYsPAw/x5lRnWHwCkTx3Mnrjg97+EP0h2cgVOQE1v3/MxdV3N0AZ1esYqwp3fjorq/meMUKsGZ1w7pN+Ii+nneWvqXzSb7pe+ZwM4Y6VvxQfxYJ8WHxTny7rmjrVujreWfpKzpd9Mgw3+RMJ6BNMUtnLglxZ12hFOL4av1qeX0WHobv+Gw2+jxRZy6i+J2alRP50/QtnSGh4Bjf8ftMp+NOfLfOqP5cdHFlXcM+OO9+RD+Rd4q++K4Vr0SG4Q4QQEVwJkBFcCZARXAmQEVwJkBFcCZARXAmQEVwJkBFcCZARdbdmw3xqbzVoA978b47QDjzs9CHvXiHM7tXE9vBueOfylttnD7sNW7t10z4nlkK+rAXC/cLZ5aCPuzF+5wJACXAmQAVwZkAFcGZABXBmQAVwZkAFcGZABXBmQAVwZkAFenem/10UWN2qfPh/vdvlSVY8WsvbY7qeVu6n8sfZ57bvUXrP1JkImPXTtZLfXpUZy5bnJDtaX+ape9dEm1pp7RfAXVnnuOjOtPhkCwn50zrlDyMn4qdl914JbWV9I6OqK+k6IZdmjaUsuKjOtH1KspiHyDJ2Zn6sXv0DsejZ7n2uZ3bjRGzD3MNp0drzlV4GWyX74scPUMmdG4+DxcI00j/NHv85SE4zTlJuQ2+zEoIdsOOBj/+jr6iacVHdZR6oj3MbRyo3HSmM9h9tk7SzXMfPVWKjh+ZEH+cnCBqWvEJI3UjrYliYUpGSJL+bLYb5uhcTtUwPpQ9qqPUoNR/p07rpRLvh/ll3HkW08EEcr/PdIKtt/xTpW/20fCIO3NYp780pc7LLKv+ob4V7+g4Zejr9ceH6eAu3AECqAjOBKgIzgSoCM4EqAjOBKgIzgSoCM4EqAjOBKgIzgSoCM4EqAjOBCjIf7XRT57XqGkMAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUwAAAJFCAIAAAA561ldAAANdklEQVR4nO3dW3LjOBIFUG+3dlVL0dLmoyIcavEhJIiUODfO+eiwaSoJqvqaNok0fv7+/fvnz58fIJWQQzghh3BCDuGEHMIJOYQTcgj3L+SPx+PxePxufPl0wmCFx38dbR8czNH+pSLnlc93mK7/cpS1/xYTB72n/5dxTjg6rzWn/Bzyf7WW1K0mc/uS508Hq+3udlS/6gMhPyr1gf+zV32TWjCU4+JL/h3v6eSk1of82aW6w47CvDzkC8fZqvUsSgdtrVD9943M9oijb/qFd+NtyHdj/7zl6EtHI9vdPv7xid3djl57fl7n479+vidndD7g3ZdcP+7F8T823o7z7ZDejvCn/v/hxDjP6wwet1p/O9Sjsx7y8jv57rifS28/PRnHyVntfrr9eOL92m7ZFjk/aGmcR1tKx5ooNX2s3SJr35+3HgcG998d+fNX3455u9vJcXdPsHTct07ezFKdfW9vvB29v0fndjSy8zrjH5/Y3e1k43Y8Jwc9H8/g+Y6cVHX7yG5H53v0qpH3Z254R6Ma3PmkyPM+b9/z7W6lg54ft3ReuwcafM9HnYf85GDnxx4f9Nt/j7fHOh/S+Ma5cZZ2Hjmp0oCPlP6xxvc/qXNlhCOvnX67dj/+/W/pbSkdt2Tw/5/nLYUD3SfkpfMcOejgxpGP345ncOeRk3pb/MT0ca+P//fT8dGWjL9dJ+N8HuTIUEfOd3D/c4Pv//OWwps8/uP6z+Yf8uQ8tzu8rbMdwMlRdp0c9HycJyf+8vH4UHfP9+KQ5t6E8e0j4xwZ//hoB10ZzMmbOTLakzrjxx2sv/v+746z9j6b8QbdtkmupXSvWuEFQg7hhBzCCTmEE3IIJ+QQTsghnJBDOCGHcC8hv/KM/opvHRfyCTmE+w357py7o7l4q7YfHRdYxpUcwgk5hHN3HcIJOYQTcggn5BBOyCGckEM4IYdwQg7hhBzCXZzxdrR/dSK6GW/QpSnk1VJCDl365q4LOdzCdMiPmkPn+kaFHLpcvPH2Es7nT+UWbmHt7+TTIfcdAboIOYQTcgi35MbbNtuP4nr0Qg5dzHiDcEIO4YQcwgk5hBNyCCfkEE7IIZyQQzghh3DWQoNwQg7hrE8O4VzJIZyQQzh31yGckEM4IYdwQg7hhBzCCTmEE3IIJ+QQTsghXNOMt2oRM96gS0fIJ4oIOXRZG/LpZjIhhy6u5BCu48abxMKNuJJDOCGHcEIO4frurpdKCTl0MeMNwgk5hBNyCCfkEE7IIZyQQzghh3DLJ8PMNaJ5Tg5dOibDTJQScugi5BCub8FDIYdbaLrxJrRwF7rQIFzT3fXPvAp4z403CKefHMKZ8QbhhBzCCTmEE3IIJ+QQTsghnJBDOP3kEM6MNwin1RTCCTmE61ufXGjhFlzJIZyQQzh31yGc5+QQzow3CCfkEE7IIZyQQzghh3BCDuGEHMKZ8QbhmkJenQ8j5NClb8FDIYdb6FvwUMjhFtbeeJtuUAG6dC94OFjNdwTo4u46hBNyCNf9CM2P6/BlZrxBOCGHcEIO4YQcwgk5hBNyCCfkEK57WmvphdPHBQ71raDymRcCbwg5hBNyCNfRT179hRxopAsNwgk5hLM+OYSzPjmEM+MNwgk5hBNyCCfkEE7IIZyQQzghh3Ctq5pWX3LxuMCOvlVNP/Aq4D2tphBOyCGcfnIIpwsNwgk5hBNyCKefHMKZ8QbhhBzCCTmEE3IIJ+QQTsghnJBDuO71yQereU4OXVq70IQcvk/IIVzfgoelakIOXfpuvMkt3ELTlVyDCtxF319r7X4JMETIIZyQQzgz3iCckEM4IYdwQg7hhBzCCTmEE3II5++uQzgrqEA4IYdwTX/+qVpKyKHL8htvc7+TA12aflyv5tw3Bejid3IIJ+QQznNyCGfGG4QTcggn5BBOyCGckEM4IYdwQg7hPCeHcGa8QTghh3BCDuFa+8nlFr7P+uQQTsghnKWLIVzfc/KJV105LrDPjDcIJ+QQTsghnJBDOCGHcEIO4YQcwl18Tr7deW7uuufk0OVKyLc7v2wZrybk0GUu5EfX6uctpYu5kEOXpit59Sd2IYcuV268nYd8dwfg0zqu5C/X87lSwBpNIa9WE3Lo4u46hLt+d3032NvtIwUrAwfGmPEG4YQcwgk5hBNyCCfkEE7IIZyQQ7jl/eTn20/qeE4OLdbOeJsoMv0SYEhHP7mQw424kkO4tf3k59uBL3Alh3BCDuGEHMKt7Sc/2j5YsDh2YIAZbxBOyCGckEM4IYdwQg7hhBzCCTmEa12fvFTHc3Jo0beCiskwcAvd65MPDkPIoUvH3PXlpYB5Hf3k518CPkoXGoRbHvK5uAo5dHF3HcLpJ4dwZrxBOCGHcEIO4YQcwgk5hBNyCCfkEE4/OYQz4w3Cre0n3+4zOAwhhy76ySFc3/rkQgu34EoO4YQcwrm7DuHW9pP/eE4Od2PGG4QTcggn5BBOyCGckEM4IYdwQg7hlveTz5XynBy6NE1rrc6HEXLo0tFPPjHpTcihS9+Ch0IOt7C2n/x5i9zCLXR0ob2YKwWsoZ8cwgk5hFveT77dYWQYQg5dzHiDcEIO4YQcwgk5hBNyCCfkEE7IIdzafvK5Oa0TxwVG9a2gUiLk0GVtP7mQw+24kkO4jn7y6i/kQCNdaBBOyCGc9ckhnPXJIZwZbxBOyCGckEM4IYdwQg7hhBzCCTmE61if3HNyuJG+VU1LhBy66CeHcPrJIZx+cginCw3CCTmEE3IIp58cwpnxBuGEHMIJOYQTcggn5BBOyCGckEO47vXJB6t5Tg5dWrvQhBy+r7WfXMjh+/oWPCxVE3LosraffPyrwIc0XcknbuD5jgAtOkI+kVghhy5CDuGW95OPF7n4EmCIGW8QTsghnJBDOCGHcEIO4YQcwgk5hFu+PvnRw/O3dTwnhxZWUIFwff3kQg630HEl/7dRyOEWlveTz/1ODnRp+p28mnPfFKCLG28QTsghnPXJIZwZbxBOyCGckEM4IYdwQg7hhBzCCTmE008O4cx4g3D6ySGcKzmEa+0nl1v4PuuTQzghh3DWJ4dwff3kpWEIOXQx4w3CCTmEE3IIJ+QQTsghnJBDOCGHcNOTYY4mqM/NXfecHLpcmQxz/vF4tdKeQE1fyEsXcyGHLhf//NPPQcirP7ELOXS5eOPt6Ofz56hfGyBwTcdfhnm5ns+VAta4eHd9d+Pur+gT1YAF3F2HcK3rk1/5yR9Yw4w3CCfkEE7IIZyQQzghh3BCDuGEHMIt7yf//WppGJ6TQ5e1M95KRS6+BBjSMa1VyOFG1vaTLywCrLG2n/xkI/AdVjWFcGv7yatFrrwEGOLuOoRb209+tH2wYHHswAAz3iCckEM4IYdwQg7hhBzCCTmEE3II17o++fgwPCeHLt1LFw8OQ8ihi5BDuI5+8olSQg5dOvrJT7YDn6afHMIt7yefi6uQQxc33iCcfnIIZ8YbhBNyCCfkEE7IIZyQQzghh3BCDuH0k0M4M94gXMcySaVSEzsDBfrJIVzf+uRCC7fQ0U++vBQwr2N98mqp6s5AgbvrEG5tP/nLl8aHIeTQxYw3CCfkEE7IIZyQQzghh3BCDuGEHMIt7yefKFXdGShoajWtzocRcujSEfKJSW9CDl2W95P/firkcAtr+8nf/hgPfNrafvLHnrlSwBr6ySGcP+QI4Zb3k293GBmGkEMXM94gnJBDOCGHcEIO4YQcwgk5hBNyCLe2n3xuTmvpuEBN3woqJUIOXYQcwq3tJxdyuJ2OfvLqL+RAI+uTQzj95BDO+uQQzvrkEM6MNwgn5BBOyCGckEM4IYdwQg7hhBzCdaxP7jk53MjyFVTm4irk0EU/OYTTTw7h9JNDuI71yZeUAtZY208u5HA7+skhnH5yCGfGG4QTcggn5BBOyCGckEM4IYdwQg7hutcnvzJ/DligtdVUyOH7hBzCre0nH//S9J5Azdp+8sEvAZ/TtD55NeG+I0CXjvXJ1/7MD1yy/K+1jhe5+BJgyPJ+8vEiF18CDDHjDcIJOYQTcggn5BBOyCGckEM4IYdwy9cnP9o+Um18f2CUFVQgnJBDuI71yf99KuRwC8v7yed+Jwe6NK1PXs25bwrQxfrkEM6NNwhnfXIIZ8YbhBNyCCfkEE7IIZyQQzghh3BCDuH0k0M4M94gnJBDuI5+8olSQg5dWvvJ5Ra+z/rkEK5jffJSnbn9gVHWJ4dwff3kpWEIOXQx4w3CCTmEE3IIJ+QQTsghnJBDOCGHcK395EtmyAKX9LWajlcr7QnUdLeaCjl8WVPIqz+xCzl0uXLjbRvj55D/iC7cQceV/OV6Xi0CrNQU8mo1IYcu7q5DOM/JIZwZbxBOyCGckEM4IYdwQg7hhBzCCTmEW/6c/PerpWF4Tg5drKAC4VobVOaKACutDfnCIsAaa/vJn7dfHBiwhis5hBNyCOfuOoRb+5z8sTE4DCGHLma8QTghh3BCDuGEHMIJOYQTcggn5BCu9e+ujw/Dc3Lo0reCiskwcAvd65NPFAFW6mhQmSgl5NClo5/8R2jhPrSaQrjlIZ+Lq5BDF3fXIZx+cghnxhuEE3IIJ+QQTsghnJBDtv8Bv8xvkfiCLcAAAAAASUVORK5CYII=" alt="" />
基本上,执行插入操作就OK了。
e.至于:删除操作,修改操作,,之针对a_0,a_1,a_2,a_3.....a_9等进行操作。
如:delete from a_n where id = m; n=0,1,1...9 ; m=当前表id值
update a_n set sub='mm',con='nn' where id=mn;
f.select操作。针对于主表a进行就可以了。
mysql分表技术的更多相关文章
- mysql分表技术(学习心得)
(最近在学习mysql优化的一些问题,以下为个人一些收获,如有不足,敬请提出!) 概述:当一个表的数据很大,比如200G,这时太大,我们只靠索引也不好使了,这时我们需要分表和分区处理.分表有两种形式( ...
- MySQL纯透明的分库分表技术还没有
MySQL纯透明的分库分表技术还没有 种树人./oneproxy --proxy-address=:3307 --admin-username=admin --admin-password=D033 ...
- mysql分表和表分区详解
为什么要分表和分区? 日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能 ...
- 【mysql】mysql分表和表分区详解
为什么要分表和分区? 日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能 ...
- MySQL分表
一.概念 1.为什么要分表和分区?日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询 ...
- 【大数据和云计算技术社区】分库分表技术演进&最佳实践笔记
1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8亿,微信10亿.CITIC对公140万,对私8700万. 订单表:美团每天几千 ...
- 总结下Mysql分表分库的策略及应用
上月前面试某公司,对于mysql分表的思路,当时简要的说了下hash算法分表,以及discuz分表的思路,但是对于新增数据自增id存放的设计思想回答的不是很好(笔试+面试整个过程算是OK过了,因与个人 ...
- MySQL 分表和分区
1.为什么需要分表和分区 在开发的过程中,经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,如果涉及联合查询的情况,性能更加 ...
- MYSQL分表与分区
什么是分表分区分表分区的区别实现方式上数据处理上提高性能上实现的难易度上mysql分表和分区的联系如何分区概述分区技术支持分区类型及举例注意应用场景示例订单表比预想中扩张速度快坑爹的日志表每半月一个分 ...
随机推荐
- cookie、localStorage和sessionStorage区别
三者区别见下表: 说明: cookie的处理过程为: 服务器向客户端发送cookie 浏览器将cookie保存 之后每次http请求浏览器都会将cookie发送给服务器端 对于 cookie,我们还需 ...
- 计算机文件基本上分为二种:二进制文件和 ASCII(也称纯文本文件)
文本文件是可以看到的字符, 二进制文件是不可视字符,如图片. 二进制文件: 包含在 ASCII及扩展 ASCII 字符中编写的数据或程序指令的文件.计算机文件基本上分为二种:二进制文件和 ASCII( ...
- JBoss目录结构说明
http://www.blogjava.net/livery/articles/262544.html $JBOSS-HOME/bin: 放置各种脚本文件以及相关文件,包括jb ...
- 基于C#的控制台的进度提示实现
在网上搜了很多关键词,比如C#控制台如何删除上一行输出,C#如何控制台删除部分内容,但是都没有很好的教程. 所以自己动手研究一下.也不是什么高深的东西,如下: 用C#开发了一个爬虫下载器,为了知道还剩 ...
- 【原创】k8s源代码分析-----kubelet(8)pod管理
本文QQ空间链接:http://user.qzone.qq.com/29185807/blog/1460540474 本文csdn博客链接:http://blog.csdn.net/screscent ...
- unity, unlit surface shader (texColor only surface shader)
要实现双面透明无光照只有纹理色的surface shader. 错误的写法:(导致带有曝光) Shader "Custom/doubleFaceTranspTexColor" { ...
- applicationCache
<html manifest="/m.appcache"> window.applicationCache.onupdateready = function (e) { ...
- ActiveMQ从源代码构建
众多开源项目.我们一般都是直接拿过来用之而后快. 只是我们也应该知道这些项目是怎样从源代码构建而来的. 既然代码是写出来的,就不能避免有BUG存在,话说没有完美的软件,也没有无漏洞的程序. 事实上从源 ...
- android studio - installation failed with message Invalid File
今天将windows上的as项目移动到mac下,使用mac下的as编译时出现下列错误: 解决办法: 1.点击工具栏上的Build中的Clean Project 2.再点击工具栏上的Build中的Reb ...
- numpy.meshgrid()理解
本文的目的是记录meshgrid()的理解过程: step1. 通过一个示例引入创建网格点矩阵; step2. 基于步骤1,说明meshgrid()的作用; step3. 详细解读meshgrid() ...