几个不错的深度学习教程,基本都有视频和演讲稿。附两篇综述文章和一副漫画。还有一些以后补充。

Jeff Dean 2013 @ Stanford

http://i.stanford.edu/infoseminar/dean.pdf

一个对DL能干什么的入门级介绍,主要涉及Google在语音识别、图像处理和自然语言处理三个方向上的一些应用。参《Spanner and Deep Learning》(2013-01-19)

Hinton 2009

A tutorial on Deep Learning

Slideshttp://videolectures.net/site/normal_dl/tag=52790/jul09_hinton_deeplearn.pdf

Video http://videolectures.net/jul09_hinton_deeplearn/  (3 hours)

从神经网络的背景来分析DL,为什么要有DL说得很清楚。对DL的基本模型结构也说得很清楚。十分推荐

更多Hinton的教程 http://www.cs.toronto.edu/~hinton/nntut.html

斯坦福的Deep Learning公开课(2012)

Samy Bengio, Tom Dean and Andrew Ng

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning

教学语言是Matlab。

参2011年的课程CS294A/CS294W  Deep Learning and Unsupervised Feature Learning

更多的斯坦福工作: Deep Learning in Natural Language Processing

NIPS 2009 tutorial

Deep Learning for Natural Language Processing, 2009 tutorial by Ronan Collobert (senna author) 
 

这个介绍了DL在三个方向上的应用:tagging (parsing), semantic search, concept labeling

Ronan Collobert的Senna是一个c的深度学习实现,只有2000多行代码

ACL 2012 tutorial

Deep Learning for NLP (without Magic)

by Richard Socher, Yoshua Bengio and Chris Manning 

Video: http://www.youtube.com/watch?v=IF5tGEgRCTQ&list=PL4617D0E28A5781B0

Kai Yu’s Tutorial

On November 26, 2012
Title: “A Tutorial on Deep Learning” 
 
Abstract: 
In the past 30 years, tremendous progress has been made in building effective classification models. Despite the success, we have to realize that, in major AI challenges, the key bottleneck is not the quality of classifiers but that of features. Since 2006, learning high-level features using deep architectures has become a big wave of new learning paradigms. In recent two years, performance breakthrough was reported in both image and speech recognition tasks, indicating deep learning are not something ignorable. In this talk, I will walk through the recent works and key building blocks, e.g., sparse coding, RBMs, auto-encoders, etc. and list the major research topics, including modeling and computational issues. In the end, I will discuss what might be interesting topics for future research. 
 
Bio of Dr. Kai Yu: 
余 凯任百度技术副总监,多媒体部负责人,主要负责公司在语音,图像,音频等领域面向互联网和移动应用的技术研发。加盟百度前,余凯博士在美国NEC研究院担 任Media Analytics部门主管(Department Head),领导团队在机器学习、图像识别、多媒体检索、视频监控,以及数据挖掘和人机交互等方面的产品技术研发。此前他曾在西门子公司任Senior Research Scientist。2011年曾在斯坦福大学计算机系客座主讲课程“CS121: 人工智能概论”。他在NIPS, ICML, CVPR, ICCV, ECCV,SIGIR, SIGKDD,TPAMI,TKDE等会议和杂志上发表了70多篇论文,H-index=28,曾担任机器学习国际会议ICML10, ICML11, NIPS11, NIPS12的Area Chair. 2012年他被评为中关村高端领军人才和北京市海聚计划高层次海外人才。 
 

Slides link: http://pan.baidu.com/share/link?shareid=136269&uk=2267174042[1]

Video link: KaiYu_report.mp4 (519.2 MB)

Theano Deep Learning Tutorial

这个是实战, 如何用Python实现深度学习

http://deeplearning.net/tutorial/

Survey Papers

很多,不过初学看这两篇应该就够了

Yoshua BengioAaron CourvillePascal Vincent. (2012) Representation Learning: A Review and New Perspectives

Yoshua Bengio (2009). Learning Deep Architectures for AI.

更多

最后来个漫画

Deep Learning虽好,也要牢记它的局限

http://baojie.org/blog/2013/01/27/deep-learning-tutorials/

Deep learning的一些教程 (转载)的更多相关文章

  1. 转载 deep learning:八(SparseCoding稀疏编码)

    转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因 ...

  2. TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】

    本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...

  3. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  4. Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...

  5. Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...

  6. Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)

    理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...

  7. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  8. Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)

    前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...

  9. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

随机推荐

  1. zepto源码--init--学习笔记

    先展示init函数,由于笔记本屏幕太小,删掉了部分源码注释,才能在一屏内截图. 当我们调用$()的时候,便会直接调用zepto.init()生成zepto对象,跟jquery生成jquery对象类似. ...

  2. 【C++】C++求vector中的最大最小值

    利用algorithm库里的max_element和min_element可以得到vector的最大最小值,配合distance函数可以得到最大值的位置 #include<vector> ...

  3. Aptana Studio 3的汉化

    Aptana Studio 3(下面简称Aptana 3)的汉化方法 1.找到这个网站 http://aptana.com/support 2.单击下面的链接 view documentation 在 ...

  4. linux i2c tools

    最近要操作eeprom,所以了解一下i2c-tool的使用方法,记录于此. 参考链接: http://www.myir-tech.com/bbs/thread-7567-1-1.html http:/ ...

  5. Apache中压力测试工具ab的操作说明

    1.压力测试工具ab(ApacheBench)的简单说明 1)     网站性能压力测试是性能调优过程中必不可少的一环.只有让服务器处在高压情况下才能真正体现出各种设置所暴露的问题.Apache中有个 ...

  6. 第一段nodejs代码

    步骤一.创建服务器 接下来我们使用 http.createServer() 方法创建服务器,并使用 listen 方法绑定 8888 端口. 函数通过 request, response 参数来接收和 ...

  7. 利用Axis2默认口令安全漏洞可入侵WebService网站

    利用Axis2默认口令安全漏洞可入侵WebService网站 近期,在乌云上关注了几则利用Axis2默认口令进行渗透测试的案例,大家的渗透思路基本一致,利用的技术工具也大致相同,我在总结这几则案例的基 ...

  8. Kafka使用入门教程 简单介绍

    介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢?   首先让我们看几个基本的消息系统术语: Kafka将消息以 ...

  9. [BS-08]注意Xcode自动提示好用但极易出错,务必看清方法的名称

    今日在写一个UIBarButtonItem的分类时,在Xcode自动提示时,因未仔细查看,错将需要用到setBackgroundImage的地方,选择成setImage,结果导致button的boun ...

  10. 第四篇 SQL Server代理配置数据库邮件

    本篇文章是SQL Server代理系列的第四篇,详细内容请参考原文. 正如这一系列的前几篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行.SQL Serve ...