B - Sky Code

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it? Fortunately, Stancu has succeeded to limit the number of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

Input

In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces. Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

Output

For each test case the program should print one line with the number of subsets with the asked property.

Sample Input

4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8

Sample Output

1
0
34

题意:给定n个数,从n个数找出四个数,使这四个数的最大公约数为1,找出有多少对这样的组合。

题解:四个数的公约数为1,并不代表四个数两两互质。比如(2,3,4,5)公约数为1,但是

   2和4并不互质。从反面考虑,先求出四个数公约数不为1的情况个数,用总的方案个数

   减去四个数公约数不为1的情况个数就是所求。

   求四个数公约数不为1的情况个数,需要将N个数每个数质因数分解,纪录下所有不同

   的素因子所能组成的因子(就是4个数的公约数),并统计构成每种因子的素因子个数,

   和因子总数。然后再计算组合数。比如说因子2的个数为a,则四个数公约数为2的个数

   为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个

   数为c,则四个数公约数的个数为C(c,4)。

   但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几

   个集合求并集,这就需要容斥定理来做。

   容斥原理应用,以2为因子的数有a个,3为因子 的数有b个,6为因子的数有c个,

   n个数不互质的四元组个数为C(a,4)+C(b,4)-C(c,4) (含奇数个素因子的加,偶数个素因子的减),

   下面就是统计出2,3,5这些因子的倍数的个数,对C(a,4)容斥!

代码:弄清思路以后就很好做了,一环扣一环,用二进制进行枚举,很棒!

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int maxn=1e4+;
typedef long long ll; //因为c(5000,4)=26010428123750。所以要用 long long 能long long 就 long long
ll c(ll n)
{
return n*(n-)*(n-)*(n-)/;
}
ll prime[],cnt=,num[maxn][]; //0代表数目 1代表奇偶性
void solve(ll n)
{
//memset(prime,0,sizeof(prime)); //这句话和cin同时用会超时 所以涉及到复杂度全用scanf
cnt=;
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
{
prime[cnt++]=i;
while(n%i==)
n/=i;
}
}
if(n!=)
prime[cnt++]=n; //这里一定注意是n不是i
for(int i=;i<(<<cnt);i++) //i=0无意义 num[1][] 无意义
{
ll flag=,tmp=;
for(int j=;j<cnt;j++)
{
if(i&(<<j))
{
flag++;
tmp*=prime[j];
}
}
//其实这里可以优化一下 若大于2500的数作为因子 他的倍数不可能够四个的
//不过是否优化对时间无影响
num[tmp][]++; //数目
num[tmp][]=flag;//奇偶性
}
}
int main()
{
ll n,data;
while(scanf("%lld",&n)!=EOF) //是lld
{
memset(num,,sizeof(num));
for(int i=;i<n;i++)
{
scanf("%lld",&data);
solve(data);
}
ll ans=c(n);
for(int i=;i<=maxn/;i++)
{
if(num[i][]) //0代表数目
{
if(num[i][]&) //1代表flag奇偶性
ans-=c(num[i][]); //注意这里用的是数目
//不是num[i][1] 更不是num[1]什么 是num[i][0]
else
ans+=c(num[i][]);
}
}
printf("%lld\n",ans);
}
return ;
}

POJ 3904 Sky Code (容斥原理)的更多相关文章

  1. [poj 3904] sky code 解题报告(组合计算+容斥原理)

    题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...

  2. POJ 3904 Sky Code

    题意:给定n个数ai, ai <= 10000, n <= 10000, 从中选出4个数要求gcd为1,这样的集合有多少个? 分析:首先总共集合nCr(n, 4) = n*(n-1)*(n ...

  3. poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合

    题目链接:http://poj.org/problem?id=3904 Sky Code Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  4. POJ Sky Code 莫比乌斯反演

    N. Sky Code Time Limit: 1000ms Case Time Limit: 1000ms Memory Limit: 65536KB   64-bit integer IO for ...

  5. POJ 3904(容斥原理)

    Sky Code Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1750   Accepted: 545 Descripti ...

  6. poj 3904(莫比乌斯反演)

    POJ 3904 题意: 从n个数中选择4个数使他们的GCD = 1,求总共有多少种方法 Sample Input 4 2 3 4 5 4 2 4 6 8 7 2 3 4 5 7 6 8 Sample ...

  7. Sky Code

    Sky Code 给出n个数,求选出4个数组合,使其gcd为1,,\(n<=10000\),每个数\(<=10000\). 解 理解1:容斥原理 注意到Mobius反演式子不好写出,于是我 ...

  8. Sky Code(poj3904)

    Sky Code Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2085   Accepted: 665 Descripti ...

  9. POJ3904 Sky Code

    题意 Language:Default Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3980 Accepte ...

随机推荐

  1. 【poj3348】 Cows

    http://poj.org/problem?id=3348 (题目链接) 题意 给出平面上n个点,以这n个点中的一些围成的多边形面积 div 50的最大值. Solution 凸包求面积. 很好做, ...

  2. .net Int16 、(int Int32)、 Int64 的区别

    关于什么是16位整数,32位整数,64位整数,请看这里:http://www.cnblogs.com/EasonJim/p/4837061.html Int16 值类型表示值介于 -32768 到 + ...

  3. C#文件复制功能

    目的是将用户自定义文件复制到指定文件夹并且能查看该文件,下面是个人做的源码: sing System; using System.Collections.Generic; using System.C ...

  4. 轻量级应用开发之(02)UIView

    一 控件 1.屏幕上的所有UI元素都叫做控件(也有叫做视图.组件)比如按钮(UIButton).文本(UILabel)都是控件. 2.控件的共同属性有哪些? 尺寸,位置,背景色 3. 苹果将控件的共同 ...

  5. 初学Hibernate持久化

    hibernate三种持久化对象状态:(持久化对象:Persistent Object=POJO + hbm映射) 1.瞬时状态(临时状态或自由态):PO对象刚创建(即new)开始进入瞬时状态,此时对 ...

  6. c/c++细节知识整理

    这篇文章总结了部分c/c++琐碎的细节知识. 目录如下: (一)bool类型 知识点出处较多,无法一一列举,向原作者致敬. (一)bool类型 在c99标准以前,c语言并没有定义bool类型.如果需要 ...

  7. mysql zip 版本配置方法

    -\bin 指 C:\Program Files\MySQL\MySQL Server 5.6\bin 1.增加环境变量 "PATH"-"-\bin" 2.修改 ...

  8. Oracle 11g r2 x64 中文乱码解决方案

    1.检查服务器编码: 执行SQL语法: select * from v$nls_parameters; 2.设置本地客户端编码: 进入 我的电脑,属性,高级,环境变量,添加2项:LANG=zh_CN. ...

  9. WPF RichTextBox的使用总结

    RichTextBox内容模型 RichTextBox 支持基于块的内容模型. RichTextBox   的内容属性为 Blocks,这是 Paragraph 元素的集合Paragraph元素可包含 ...

  10. Ajax相同url的请求,IE缓存问题

    最近做一个小项目,其中的一个页面如下,需要实现异步改变“是否推荐”的状态. 请求的代码如下: $.get("/Contorller/Edit", { id: id }, funct ...