BAIndividual.py

 import numpy as np
import ObjFunction class BAIndividual: '''
individual of bat algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for bat algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
self.velocity = np.random.random(size=len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

BA.py

 import numpy as np
from BAIndividual import BAIndividual
import random
import copy
import matplotlib.pyplot as plt class BatAlgorithm: '''
the class for bat algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[fmax, fmin, Amax, Amin, alpha, gamma]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.freq = np.zeros(self.sizepop)
self.loudness = np.zeros(self.sizepop)
self.emissionrate = np.zeros(self.sizepop)
self.initEmissionrate = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = BAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind)
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.loudness[i] = self.params[3] + \
(self.params[2] - self.params[3]) * np.random.random(1)
self.initEmissionrate[i] = np.random.random(1)
self.emissionrate[i] = self.initEmissionrate[i] def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the bat algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
self.update()
# idx = self.select()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def update(self):
'''
update the population
'''
for i in xrange(0, self.sizepop):
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.population[
i].velocity += (self.best.chrom - self.population[i].chrom) * self.freq[i] self.population[i].chrom += self.population[i].velocity
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
rnd = np.random.random(1)
A = np.mean(self.emissionrate)
tmpInd = copy.deepcopy(self.best)
if rnd > self.emissionrate[i]:
tmpInd.chrom += np.random.uniform(low=-1,
high=1.0, size=self.vardim) * A
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
if tmpInd.fitness > self.best.fitness and random.random() < self.loudness[i]:
self.population[i] = tmpInd
self.loudness[i] *= self.params[4]
self.emissionrate[i] = self.initEmissionrate[
i] * (1 - np.exp(self.params[5] * self.t))
if tmpInd.fitness > self.best.fitness:
self.best = copy.deepcopy(tmpInd) def selectOne(self):
'''
select one individual from the population
'''
totalFitness = np.sum(self.fitness)
accuFitness = np.zeros(self.sizepop) sum1 = 0.
for i in xrange(0, self.sizepop):
accuFitness[i] = sum1 + self.fitness[i] / totalFitness
sum1 = accuFitness[i] r = random.random()
idx = 0
for j in xrange(0, self.sizepop - 1):
if j == 0 and r < accuFitness[j]:
idx = 0
break
elif r >= accuFitness[j] and r < accuFitness[j + 1]:
idx = j + 1
break
return idx def printResult(self):
'''
plot the result of bat algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Bat algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
ba = BA(60, 25, bound, 1000, [1, 0, 1, 0, 0.8, 0.9])
ba.solve()

ObjFunction见简单遗传算法-python实现

蝙蝠算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. Android中Spinner下拉列表(使用ArrayAdapter和自定义Adapter实现) .

    今天学习了Spinner组件,使用Spinner相当于从下拉列表中选择项目,下面演示一下Spinner的使用(分别使用ArrayAdapter和自定义Adapter实现) (一):使用ArrayAda ...

  2. springmvc源码分析(转)

    该博客转载自http://www.cnblogs.com/heavenyes/p/3905844.html#特在此说明!!!!! springmvc是一个基于spring的web框架.本篇文章对它的工 ...

  3. [转]iOS 应用内付费(IAP)开发步骤

    FROM : http://blog.csdn.net/xiaoxiangzhu660810/article/details/17434907 参考文章链接: (1)http://mobile.51c ...

  4. phpmailer 参数使用说明

    $AltBody--属性 出自:PHPMailer::$AltBody 文件:class.phpmailer.php 说明:该属性的设置是在邮件正文不支持HTML的备用显示 AddAddress--方 ...

  5. matlab中textread

    今天打算跑下程序,突然发现,真的很烂,不会读入数据,简单的Iris.txt一上午都没读进去,在此对matlab中的textread函数做下总结,textscan函数待续. 本文主要内容引自http:/ ...

  6. MSSQL 分组后取每组第一条(group by order by)

    查询中经常遇到这种查询,分组后取每组第一条.分享下一个SQL语句: --根据 x 分组后.根据 y 排序后取第一条 select * from ( select ROW_NUMBER() over(p ...

  7. JDK报错Unsupported major.minor version 52.0

    一.问题描述: 新建web项目,由于我配置的Tomcat 6依赖jdk 1.8,所以新建的工程在jdk1.8环境下生成.当我把jdk改成1.6版本时,运行main方法或其他,则 报以下错误: java ...

  8. 基于win32的socket编程及程序实现

    初步研究了win32平台的Windows Sockets,它是Microsoft Windows的网络程序设计接口,它是从Berkeley Sockets扩展而来的,以动态链接库的形式提供给我们使用. ...

  9. ubuntu 安装编译nginx,并实现HLS推送,,可以实现摄像头直播

    1.安装nginx的依赖包  zlib pcre openssl(可以源码安装也可以直接系统安装) sudo apt-get install libpcre3 libpcre3-dev zlib1g- ...

  10. 分享:大晚上用自己的锤子手机跨系统刷MIUI,跌宕起伏啊!!

    序言: 写这篇博客之前问了一下博客园官方,能不能写关于刷机这一方面的,官方还是比较通情达理的,说技术类没有限制的,那样我就放心的写了.今天早上在博客园中稍微逛了一下,感觉似乎很少有关于刷机这一方面的, ...