蝙蝠算法-python实现
BAIndividual.py
import numpy as np
import ObjFunction class BAIndividual: '''
individual of bat algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for bat algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
self.velocity = np.random.random(size=len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
BA.py
import numpy as np
from BAIndividual import BAIndividual
import random
import copy
import matplotlib.pyplot as plt class BatAlgorithm: '''
the class for bat algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[fmax, fmin, Amax, Amin, alpha, gamma]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.freq = np.zeros(self.sizepop)
self.loudness = np.zeros(self.sizepop)
self.emissionrate = np.zeros(self.sizepop)
self.initEmissionrate = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = BAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind)
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.loudness[i] = self.params[3] + \
(self.params[2] - self.params[3]) * np.random.random(1)
self.initEmissionrate[i] = np.random.random(1)
self.emissionrate[i] = self.initEmissionrate[i] def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the bat algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
self.update()
# idx = self.select()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def update(self):
'''
update the population
'''
for i in xrange(0, self.sizepop):
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.population[
i].velocity += (self.best.chrom - self.population[i].chrom) * self.freq[i] self.population[i].chrom += self.population[i].velocity
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
rnd = np.random.random(1)
A = np.mean(self.emissionrate)
tmpInd = copy.deepcopy(self.best)
if rnd > self.emissionrate[i]:
tmpInd.chrom += np.random.uniform(low=-1,
high=1.0, size=self.vardim) * A
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
if tmpInd.fitness > self.best.fitness and random.random() < self.loudness[i]:
self.population[i] = tmpInd
self.loudness[i] *= self.params[4]
self.emissionrate[i] = self.initEmissionrate[
i] * (1 - np.exp(self.params[5] * self.t))
if tmpInd.fitness > self.best.fitness:
self.best = copy.deepcopy(tmpInd) def selectOne(self):
'''
select one individual from the population
'''
totalFitness = np.sum(self.fitness)
accuFitness = np.zeros(self.sizepop) sum1 = 0.
for i in xrange(0, self.sizepop):
accuFitness[i] = sum1 + self.fitness[i] / totalFitness
sum1 = accuFitness[i] r = random.random()
idx = 0
for j in xrange(0, self.sizepop - 1):
if j == 0 and r < accuFitness[j]:
idx = 0
break
elif r >= accuFitness[j] and r < accuFitness[j + 1]:
idx = j + 1
break
return idx def printResult(self):
'''
plot the result of bat algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Bat algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__": bound = np.tile([[-600], [600]], 25)
ba = BA(60, 25, bound, 1000, [1, 0, 1, 0, 0.8, 0.9])
ba.solve()
ObjFunction见简单遗传算法-python实现。
蝙蝠算法-python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- Android中Spinner下拉列表(使用ArrayAdapter和自定义Adapter实现) .
今天学习了Spinner组件,使用Spinner相当于从下拉列表中选择项目,下面演示一下Spinner的使用(分别使用ArrayAdapter和自定义Adapter实现) (一):使用ArrayAda ...
- springmvc源码分析(转)
该博客转载自http://www.cnblogs.com/heavenyes/p/3905844.html#特在此说明!!!!! springmvc是一个基于spring的web框架.本篇文章对它的工 ...
- [转]iOS 应用内付费(IAP)开发步骤
FROM : http://blog.csdn.net/xiaoxiangzhu660810/article/details/17434907 参考文章链接: (1)http://mobile.51c ...
- phpmailer 参数使用说明
$AltBody--属性 出自:PHPMailer::$AltBody 文件:class.phpmailer.php 说明:该属性的设置是在邮件正文不支持HTML的备用显示 AddAddress--方 ...
- matlab中textread
今天打算跑下程序,突然发现,真的很烂,不会读入数据,简单的Iris.txt一上午都没读进去,在此对matlab中的textread函数做下总结,textscan函数待续. 本文主要内容引自http:/ ...
- MSSQL 分组后取每组第一条(group by order by)
查询中经常遇到这种查询,分组后取每组第一条.分享下一个SQL语句: --根据 x 分组后.根据 y 排序后取第一条 select * from ( select ROW_NUMBER() over(p ...
- JDK报错Unsupported major.minor version 52.0
一.问题描述: 新建web项目,由于我配置的Tomcat 6依赖jdk 1.8,所以新建的工程在jdk1.8环境下生成.当我把jdk改成1.6版本时,运行main方法或其他,则 报以下错误: java ...
- 基于win32的socket编程及程序实现
初步研究了win32平台的Windows Sockets,它是Microsoft Windows的网络程序设计接口,它是从Berkeley Sockets扩展而来的,以动态链接库的形式提供给我们使用. ...
- ubuntu 安装编译nginx,并实现HLS推送,,可以实现摄像头直播
1.安装nginx的依赖包 zlib pcre openssl(可以源码安装也可以直接系统安装) sudo apt-get install libpcre3 libpcre3-dev zlib1g- ...
- 分享:大晚上用自己的锤子手机跨系统刷MIUI,跌宕起伏啊!!
序言: 写这篇博客之前问了一下博客园官方,能不能写关于刷机这一方面的,官方还是比较通情达理的,说技术类没有限制的,那样我就放心的写了.今天早上在博客园中稍微逛了一下,感觉似乎很少有关于刷机这一方面的, ...