Spark 开发中遇到的一些问题
1.StackOverflowError
问题:简单代码记录 :
for (day <- days){
rdd = rdd.union(sc.textFile(/path/to/day) .... )
}
大概场景就是我想把数量比较多的文件合并成一个大rdd,从而导致了栈溢出;
解决:很明显是方法递归调用太多,我之后改成了几个小任务进行了合并;这里union也会造成最终rdd分区数过多
2.java.io.FileNotFoundException: /tmp/spark-90507c1d-e98 ..... temp_shuffle_98deadd9-f7c3-4a12(No such file or directory) 类似这种
报错:Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 76.0 failed 4 times, most recent failure: Lost task 0.3 in stage 76.0 (TID 341, 10.5.0.90): java.io.FileNotFoundException: /tmp/spark-90507c1d-e983-422d-9e01-74ff0a5a2806/executor-360151d5-6b83-4e3e-a0c6-6ddc955cb16c/blockmgr-bca2bde9-212f-4219-af8b-ef0415d60bfa/26/temp_shuffle_98deadd9-f7c3-4a12-9a30-7749f097b5c8 (No such file or directory)
场景:大概代码和上面差不多:
for (day <- days){
rdd = rdd.union(sc.textFile(/path/to/day) .... )
}
rdd.map( ... )
解决:简单的map都会报错,怀疑是临时文件过多;查看一下rdd.partitions.length 果然有4k多个;基本思路就是减少分区数
可以在union的时候就进行重分区:
for (day <- days){
rdd = rdd.union(sc.textFile(/path/to/day,numPartitions) .... )
rdd = rdd.coalesce(numPartitions)
} //这里因为默认哈希分区,并且分区数相同;所有最终union的rdd的分区数不会增多,贴一下源码以防说错
/** Build the union of a list of RDDs. */
def union[T: ClassTag](rdds: Seq[RDD[T]]): RDD[T] = withScope {
val partitioners = rdds.flatMap(_.partitioner).toSet
if (rdds.forall(_.partitioner.isDefined) && partitioners.size == 1) {
/*这里如果rdd的分区函数都相同则会构建一个PartitionerAwareUnionRDD:m RDDs with p partitions each
* will be unified to a single RDD with p partitions*/
new PartitionerAwareUnionRDD(this, rdds)
} else {
new UnionRDD(this, rdds)
}
}
或者最后在重分区
for (day <- days){
rdd = rdd.union(sc.textFile(/path/to/day) .... )
}
rdd.repartition(numPartitions)
3.java.lang.NoClassDefFoundError: Could not initialize class com.tzg.scala.play.UserPlayStatsByUuid$
at com.tzg.scala.play.UserPlayStatsByUuid$$anonfun$main$2.apply(UserPlayStatsByUuid.scala:42)
at com.tzg.scala.play.UserPlayStatsByUuid$$anonfun$main$2.apply(UserPlayStatsByUuid.scala:40)
场景:用scala 写的一个类,把所有的常量都放到了类的成员变量声明部分,结果在加载这个类的成员变量时报错
反编译成java代码
public final class implements Serializable {
public static final MODULE$;
private final int USER_OPERATION_OPERATION_TYPE;
public int USER_OPERATION_OPERATION_TYPE() { return this.USER_OPERATION_OPERATION_TYPE; } static
{
new ();
} private Object readResolve(){return MODULE$; }
private () {MODULE$ = this; this.USER_OPERATION_OPERATION_TYPE = 4;}
}
报错部分类字节码:
解决:在加载类的一个成员变量失败,导致抛出NoClassDefFoundError:Could not initialize class,把这些常量移出类的声明体,那么在初始化时肯定不会加载失败了
4.ContextCleaner Time Out
17/01/04 03:32:49 [ERROR] [org.apache.spark.ContextCleaner:96] - Error cleaning broadcast 414
akka.pattern.AskTimeoutException: Timed out
解决:spark-submit增加了两个参数:
--conf spark.cleaner.referenceTracking.blocking=true \
--conf spark.cleaner.referenceTracking.blocking.shuffle=true \
参考自spark-issue:SPARK-3139
5. java.lang.NoSuchMethodError: scala.Predef$.ArrowAssoc(Ljava/lang/Object;)
解决:scala环境和spark环境不匹配,spark1.x 对应scala10 ; spark2.x 对应scala11
6.join操作:
不管是spark还是pandas,都不会对两个join的表进行去重,所以如果要join的关联键是重复的,结果肯定会让人意想不到,所以谨记join时保证关联键是不重复的
rdd1 = sc.makeRDD(List('A','A','B'))
val pairs1 = rdd1.map(k => (k,1))
val rdd2 = sc.makeRDD(List('A','B','B'))
val pairs2 = rdd2.map(k => (k,1))
pairs1.join(pairs2).collect() // Array[(Char, (Int, Int))] = Array((B,(1,1)), (B,(1,1)), (A,(1,1)), (A,(1,1)))
7.spark streaming Could not compute split, block
input-0-14491
91870000
not found
15/12/04 15:27:27 WARN [task-result-getter-0] TaskSetManager: Lost task 0.0 in stage 3.0 (TID 56, 192.168.0.2): java.lang.Exception: Could not compute split, block input-0-1449191870000 not found
at org.apache.spark.rdd.BlockRDD.compute(BlockRDD.scala:51)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
解决:加大executor内存
8.JSON.parseFull(jsonArrayStr)抛出异常:
exception For input string: "1496713640091"
java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
java.lang.Integer.parseInt(Integer.java:495)
java.lang.Integer.parseInt(Integer.java:527)
scala.collection.immutable.StringLike$class.toInt(StringLike.scala:229)
scala.collection.immutable.StringOps.toInt(StringOps.scala:31)
kafka.utils.Json$$anonfun$1.apply(Json.scala:27)
kafka.utils.Json$$anonfun$1.apply(Json.scala:27)
scala.util.parsing.json.Parser$$anonfun$number$1.applyOrElse(Parser.scala:140)
scala.util.parsing.json.Parser$$anonfun$number$1.applyOrElse(Parser.scala:140)
问题很明显就是数值太大了,然后就各种找源码
scala-doc:http://www.scala-lang.org/api/2.10.5/index.html#scala.util.parsing.json.JSON$
scala-source:https://github.com/scala/scala/blob/v2.10.5/src/library/scala/util/parsing/json/JSON.scala#L1
https://github.com/scala/scala/blob/2.10.x/src/library/scala/util/parsing/combinator/Parsers.scala
kafka-source:
https://github.com/apache/kafka/blob/trunk/core/src/main/scala/kafka/utils/Json.scala
截取重要代码如下:
可以看到kafka.util.Json的parseFull类会调用scala.util.parsing.json.JSON.parseFull方法,而这个JSON实例有个属性gobalNumberParser来指定数字型的字符串默认转成Int,这里就是问题所在,当数字过大的时候就会报错NumberFormatException
解决方法:
修改默认转换函数:
val myConversionFunc = {input : String => input.toLong} //源码中是toInt,uid之类的会报错
JSON.globalNumberParser = myConversionFunc 9.最近学习google tensorflow下的wide and deep leanrning的教程,原教程是全部数据fit进去的,我的赛题数据太大,所以直接报错OOM,然后就开始找各种解决办法,如下是谷歌的官方回复,先贴在这里:
Wide_n_deep : question on input_fn(df) - Google Groups
然后我的需求就是将pandas对象直接转成tensor,然后做一个分批次的生成器,对应的核心代码剪切到这里:
def input_fn():
"""
假定数据源是一个5行,\t分隔的,类型全都是float的tsv文件;前4列是特征,后1列是目标变量
"""
parse_fn = lambda example: tf.decode_csv(records=example,
record_defaults=[[0.0], [0.0], [0.0], [0.0], [0.0]],
field_delim='\t') inputs = tf.contrib.learn.read_batch_examples(file_pattern=file_paths,
batch_size=256,
reader=tf.TextLineReader,
randomize_input=True,
num_epochs=1,
queue_capacity=10000,
num_threads=1,
parse_fn=parse_fn,
seed = None) feats = {} for i, header in enumerate(["feature1", "feature2", "feature3", "feature4"]):
feats[header] = inputs[:, i]
targets = inputs[:, 4] return feats, targets
初学TF,顺便贴下相关函数的函数API:
tf.contrib.learn.read_batch_examples
10.Unsupported major.minor version 52.0
Exception in thread "main" java.lang.UnsupportedClassVersionError: com/sensorsdata/analytics/tools/hdfsimporter/HdfsImporter : Unsupported major.minor version 52.0
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:449)
at java.net.URLClassLoader.access$100(URLClassLoader.java:71)
at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:270)
at org.apache.hadoop.util.RunJar.run(RunJar.java:214)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
52是java 8的版本,需要升级原来的jdk,或者重新编译原来的类
11.java.sql.SQLException: Unable to open a test connection to the given database. JDBC url = jdbc:mysql://127.0.0.1/hive?createDatabaseIfNotExist=true
The last packet sent successfully to the server was 0 milliseconds ago. The driver has not received any packets from the server.
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at com.mysql.jdbc.Util.handleNewInstance(Util.java:411)
at com.mysql.jdbc.SQLError.createCommunicationsException(SQLError.java:1121)
at com.mysql.jdbc.MysqlIO.<init>(MysqlIO.java:357)
at com.mysql.jdbc.ConnectionImpl.coreConnect(ConnectionImpl.java:2482)
at com.mysql.jdbc.ConnectionImpl.connectOneTryOnly(ConnectionImpl.java:2519)
at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2304)
at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:834)
at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:47)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at com.mysql.jdbc.Util.handleNewInstance(Util.java:411)
at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:416)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:346)
at java.sql.DriverManager.getConnection(DriverManager.java:571)
at java.sql.DriverManager.getConnection(DriverManager.java:187)
at com.jolbox.bonecp.BoneCP.obtainRawInternalConnection(BoneCP.java:361)
at com.jolbox.bonecp.BoneCP.<init>(BoneCP.java:416)
at com.jolbox.bonecp.BoneCPDataSource.getConnection(BoneCPDataSource.java:120)
at org.datanucleus.store.rdbms.ConnectionFactoryImpl$ManagedConnectionImpl.getConnection(ConnectionFactoryImpl.java:501)
at org.datanucleus.store.rdbms.RDBMSStoreManager.<init>(RDBMSStoreManager.java:298)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.datanucleus.plugin.NonManagedPluginRegistry.createExecutableExtension(NonManagedPluginRegistry.java:631)
at org.datanucleus.plugin.PluginManager.createExecutableExtension(PluginManager.java:301)
at org.datanucleus.NucleusContext.createStoreManagerForProperties(NucleusContext.java:1187)
at org.datanucleus.NucleusContext.initialise(NucleusContext.java:356)
at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.freezeConfiguration(JDOPersistenceManagerFactory.java:775)
at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.createPersistenceManagerFactory(JDOPersistenceManagerFactory.java:333)
at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.getPersistenceManagerFactory(JDOPersistenceManagerFactory.java:202)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at javax.jdo.JDOHelper$16.run(JDOHelper.java:1965)
at java.security.AccessController.doPrivileged(Native Method)
at javax.jdo.JDOHelper.invoke(JDOHelper.java:1960)
at javax.jdo.JDOHelper.invokeGetPersistenceManagerFactoryOnImplementation(JDOHelper.java:1166)
at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:808)
at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:701)
at org.apache.hadoop.hive.metastore.ObjectStore.getPMF(ObjectStore.java:365)
at org.apache.hadoop.hive.metastore.ObjectStore.getPersistenceManager(ObjectStore.java:394)
at org.apache.hadoop.hive.metastore.ObjectStore.initialize(ObjectStore.java:291)
at org.apache.hadoop.hive.metastore.ObjectStore.setConf(ObjectStore.java:258)
at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:73)
at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133)
at org.apache.hadoop.hive.metastore.RawStoreProxy.<init>(RawStoreProxy.java:57)
at org.apache.hadoop.hive.metastore.RawStoreProxy.getProxy(RawStoreProxy.java:66)
at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.newRawStore(HiveMetaStore.java:593)
at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMS(HiveMetaStore.java:571)
at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.createDefaultDB(HiveMetaStore.java:620)
at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.init(HiveMetaStore.java:461)
at org.apache.hadoop.hive.metastore.RetryingHMSHandler.<init>(RetryingHMSHandler.java:66)
at org.apache.hadoop.hive.metastore.RetryingHMSHandler.getProxy(RetryingHMSHandler.java:72)
at org.apache.hadoop.hive.metastore.HiveMetaStore.newRetryingHMSHandler(HiveMetaStore.java:5762)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:199)
at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:74)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1521)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:86)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:132)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104)
at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005)
at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3024)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503)
at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:204)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:249)
at org.apache.spark.sql.hive.HiveContext.metadataHive$lzycompute(HiveContext.scala:327)
at org.apache.spark.sql.hive.HiveContext.metadataHive(HiveContext.scala:237)
at org.apache.spark.sql.hive.HiveContext.setConf(HiveContext.scala:441)
at org.apache.spark.sql.hive.HiveContext.defaultOverrides(HiveContext.scala:226)
at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:229)
at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:101)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:234)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:214)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:79)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:68)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.ConnectException: Connection refused
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:339)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:200)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:182)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:579)
at java.net.Socket.connect(Socket.java:528)
at java.net.Socket.<init>(Socket.java:425)
at java.net.Socket.<init>(Socket.java:241)
at com.mysql.jdbc.StandardSocketFactory.connect(StandardSocketFactory.java:259)
at com.mysql.jdbc.MysqlIO.<init>(MysqlIO.java:307)
... 91 more
解决:修改$SPARK_HOME/conf/hive-site.xml的javax.jdo.option.ConnectionURL值为正确的mysql连接串
keras训练多文本分类的时候,总是碰到loss为nan的情况,如下图:
那么我试验中两个debug的地方就是修改激活函数和最后一个全连接层的神经元个数:
激活函数是softmax,最后一层神经元是类别个数的两倍
12.Mongo Hadoop Connector使用过程中,hive查询where不可以使用等号"="
从上图可以明显看出,“=”并不能获得期望的结果,可以通过使用“in”或者“like”来获取期望结果。同时,“==”并不会报错,而且效果与“=”一致,都是错误的。
13.Caused by: java.io.FileNotFoundException: File does not exist: hdfs://nameservice/user/hive/warehouse/prod.db/my_table/000000_0_copy_2
场景:hadoop多用户使用,一个程序往hive数据库写,另一个程序去查;就会出现数据不存在的问题
Spark 开发中遇到的一些问题的更多相关文章
- 2014年spark开发人员大赛火热进行中!
"发现最有正能量的网络达人".Spark开发人员大赛火热进行! watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd3d0dHoxOTc0/ ...
- Windows环境下在IDEA编辑器中spark开发安装步骤
以下是windows环境下安装spark的过程: 1.安装JDK(version:1.8.0.152) 2.安装scala(version:2.11/2.12) 3.安装spark(version:s ...
- fir.im Weekly - iOS开发中的Git流程
本期 fir.im Weekly 收集了微博上的热转资源,包含 Android.iOS 开发工具.源码等好用的轮子,还有一些 APP 设计的 Tips,希望对你有用. 精仿知乎日报 iOS 端 @我偏 ...
- Windows下单机安装Spark开发环境
机器:windows 10 64位. 因Spark支持java.python等语言,所以尝试安装了两种语言环境下的spark开发环境. 1.Java下Spark开发环境搭建 1.1.jdk安装 安装o ...
- 使用Intellij IDEA构建spark开发环境
近期开始研究学习spark,开发环境有多种,由于习惯使用STS的maven项目,但是按照许多资料的方法尝试以后并没有成功,也可能是我环境问题:也可以是用scala中自带的eclipse,但是不太习惯, ...
- Spark开发指南
原文链接http://www.sxt.cn/info-2730-u-756.html 目录 Spark开发指南 简介 接入Spark Java 初始化Spark Java 弹性分布式数据集 并行集合 ...
- windows下spark开发环境配置
http://www.cnblogs.com/davidwang456/p/5032766.html windows下spark开发环境配置 --本篇随笔由同事葛同学提供. windows下spark ...
- [Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Mem ...
- Spark编译及spark开发环境搭建
最近需要将生产环境的spark1.3版本升级到spark1.6(尽管spark2.0已经发布一段时间了,稳定可靠起见,还是选择了spark1.6),同时需要基于spark开发一些中间件,因此需要搭建一 ...
随机推荐
- C# DateTime与时间戳转换
C# DateTime与时间戳的相互转换,包括JavaScript时间戳和Unix的时间戳. 1. 什么是时间戳 首先要清楚JavaScript与Unix的时间戳的区别: JavaScript时间戳: ...
- C++随笔:.NET CoreCLR之GC探索(2)
首先谢谢 @dudu 和 @张善友 这2位大神能订阅我,本来在写这个系列以前,我一直对写一些核心而且底层的知识持怀疑态度,我为什么持怀疑态度呢?因为一般写高层语言的人99%都不会碰底层,其实说句实话, ...
- 漫谈TCP
不得不承认,tcp是一个非常复杂的协议.它包含了RFC793及之后的一些协议.能把tcp的所有方面面面具到地说清楚,本身就是个很复杂的事情.如果再讲得枯燥,那么就会更让人昏昏欲睡了.本文希望能尽量用稍 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- BPM费控管理解决方案分享
一.方案概述费用是除经营成本外企业的最主要支出,费用管理是财务管理的核心之一,加强企业内控管理如:费用申请.费用报销.费用分摊.费用审批.费用控制和费用支付等,通过科学有效的管理方法规范企业费用管理, ...
- Android—Volley:接收服务端发送的json数据乱码问题解决
new JsonObjectRequest中重写方法parseNetworkResponse,内容如下: /** * 重写此方法不会导致乱码 */ @Override protected Respon ...
- Linux LVM逻辑卷配置过程详解
许多Linux使用者安装操作系统时都会遇到这样的困境:如何精确评估和分配各个硬盘分区的容量,如果当初评估不准确,一旦系统分区不够用时可能不得不备份.删除相关数据,甚至被迫重新规划分区并重装操作系统,以 ...
- Linux网络属性配置
目录 IP地址分类 如何将Linux主机接入到网络中 网络接口的命名方式 ifcfg系列命令 如何配置主机名 如何配置DNS服务器指向 iproute2系列命令 Linux管理网络服务 永久生效配置路 ...
- 豪情-CSS解构系列之-新浪页面解构-01
目录: 一. 新浪的布局特点 二. 内容细节的特点 三. 其中相关的一些基础技术点 1. 常见布局方法 2. 布局要点 3. Debugger误区 4.列表 5.字体颜色 6.CSS选择符 7.CSS ...
- CYQ.Data 从入门到放弃ORM系列:开篇:自动化框架编程思维
前言: 随着CYQ.Data 开始回归免费使用之后,发现用户的情绪越来越激动,为了保持这持续的激动性,让我有了开源的念头. 同时,由于框架经过这5-6年来的不断演进,以前发的早期教程已经太落后了,包括 ...