题目链接:https://ac.nowcoder.com/acm/contest/882/C

来自:山东大学FST_stay_night的的题解,加入一些注释帮助理解神仙代码。

好像题解被套了一次又一次

要学习的地方我觉得是2点:

1.使用dp(贪心)的思想求出每段所在的连续段

2.因为前缀和是连续变化的,可以用lazy标记来代替树状数组来维护。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); err(_it, args); } void err(istream_iterator<string> it) {
cerr << "\n";
}
template<typename T, typename... Args>
void err(istream_iterator<string> it, T a, Args... args) {
cerr << *it << "=" << a << ", ";
err(++it, args...);
} #define ERR1(arg,n) { cerr<<""<<#arg<<"=\n "; for(int i=1;i<=n;i++) cerr<<arg[i]<<" "; cerr<<"\n"; }
#define ERR2(arg,n,m) { cerr<<""<<#arg<<"=\n"; for(int i=1;i<=n;i++) { cerr<<" "; for(int j=1;j<=m;j++)cerr<<arg[i][j]<<" "; cerr<<"\n"; } } const int INF = 0x3f3f3f3f;
const int MAXN = 10000000, MAXM = 1000000; int l[MAXM + 5], r[MAXM + 5], f[MAXM + 5], g[MAXM + 5];
int sum[MAXN * 3 + 5], b[MAXN * 3 + 5], c[MAXN * 3 + 5]; int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d%d", &l[i], &r[i]);
f[1] = r[1] - l[1] + 1;
//f[i]以i段右端点为结尾的能构造出的最大的前缀和
for(int i = 2; i <= n; i++)
f[i] = max(0, f[i - 1] - (l[i] - r[i - 1] - 1)) + r[i] - l[i] + 1;
//0:以i-1段右端点结尾的能构造出的最大的前缀和都不足够跨过[i-1,i]之间的-1
//f[i - 1] - (l[i] - r[i - 1] - 1):跨过之后还剩下多少贡献给这段
g[n] = r[n] - l[n] + 1;
//g[i]以i段左端点为开头的能构造出的最大的前缀和
for(int i = n - 1; i >= 1; i--)
g[i] = max(0, g[i + 1] - (l[i + 1] - r[i] - 1)) + r[i] - l[i] + 1;
//ERR1(f, n);
//ERR1(g, n);
int i = 1, base = 10000000;
ll ans = 0;
while(i <= n) {
int j = i + 1;
while(j <= n && g[j] + f[j - 1] >= l[j] - r[j - 1] - 1) {
//说明这个[j-1,j]之间的-1段可以因为两侧的f[j-1]和g[j]足够大而连接起来
j++;
}
j--;
//此时j是从i开始最远能够连接到的区间
int left = max(0, l[i] - g[i]), right = min(1000000000 - 1, r[j] + f[j]);
//left,right是至少会产生一个贡献的范围
//ERR(left, right);
int t = i, mi = INF, mx = 0;
sum[0] = 0;
for(int k = left; k <= right; k++) {
//统计这一整段可连接区间的前缀和
if(k >= l[t] && k <= r[t])
sum[k - left + 1] = sum[k - left] + 1;
else
sum[k - left + 1] = sum[k - left] - 1;
if(k == r[t])
t++;
mi = min(mi, sum[k - left + 1] + base);
mx = max(mx, sum[k - left + 1] + base);
//b记录前缀和出现过的次数
b[sum[k - left + 1] + base] ++;
}
//ERR1(sum, right);
//b记录前缀和出现过的次数的后缀和
for(int k = mx - 1; k >= mi; k--)
b[k] += b[k + 1];
//包含最左侧点的贡献
ans += b[base + 1];
for(int k = left; k <= right; k++) {
t = sum[k - left + 1] + base;
//t表示k位置sum的值
//b[t+1]比t大的值的个数
//c[t+1]比在k位置左侧的比t大的值的个数的lazy
b[t + 1] -= c[t + 1]; //把lazy加上去
c[t] += c[t + 1] + 1; //lazy标记下移
c[t + 1] = 0; //清空lazy
ans += b[t + 1];
}
for(int k = mi; k <= mx; k++)
b[k] = 0, c[k] = 0;
i = j + 1;
}
printf("%lld", ans);
return 0;
}

2019牛客暑期多校训练营(第二场) - J - Go on Strike! - 前缀和预处理的更多相关文章

  1. 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)

    题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...

  2. 2020牛客暑期多校训练营 第二场 J Just Shuffle 置换 群论

    LINK:Just Shuffle 比较怂群论 因为没怎么学过 置换也是刚理解. 这道题是 已知一个置换\(A\)求一个置换P 两个置换的关键为\(P^k=A\) 且k是一个大质数. 做法是李指导教我 ...

  3. 2020牛客暑期多校训练营 第二场 K Keyboard Free 积分 期望 数学

    LINK:Keyboard Free 我要是会正经的做法 就有鬼了. 我的数学水平没那么高. 三个同心圆 三个动点 求围成三角形面积的期望. 不会告辞. 其实可以\(n^2\)枚举角度然后算出面积 近 ...

  4. 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路

    LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...

  5. 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心

    LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...

  6. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  7. 2020牛客暑期多校训练营 第二场 A All with Pairs 字符串hash KMP

    LINK:All with Pairs 那天下午打这个东西的时候状态极差 推这个东西都推了1个多小时 (比赛是中午考试的我很困 没睡觉直接开肝果然不爽 一开始看错匹配的位置了 以为是\(1-l\)和\ ...

  8. 2019牛客暑期多校训练营(第九场) D Knapsack Cryptosystem

    题目 题意: 给你n(最大36)个数,让你从这n个数里面找出来一些数,使这些数的和等于s(题目输入),用到的数输出1,没有用到的数输出0 例如:3  4 2 3 4 输出:0 0 1 题解: 认真想一 ...

  9. 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)

    layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...

  10. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

随机推荐

  1. 【iOS】获取应用程序本地路径

    Xcode 会为每一个应用程序生成一个私有目录,并随机生成一个数字和字母串作为目录名,在每一次应用程序启动时,这个字母数字串都是不同于上一次. 所以通常使用 Documents 目录进行数据持久化的保 ...

  2. Iterator-Java

    在Java中,Iterator的作用就是为了方便处理集合中的元素.例如获取和删除集合中的元素. 在JDK8,Iterator接口提供了如下方法: 迭代器Iterator最基本的两个方法是next()和 ...

  3. JAVA并发编程之倒计数器CountDownLatch

    CountDownLatch 的使用场景:在主线程中开启多线程去并行执行任务,并且主线程需要等待所有子线程执行完毕后汇总返回结果. 我把源码中的英文注释全部删除,写上自己的注释.就剩下 70 行不到的 ...

  4. 夯实Java基础(三)——面向对象之继承

    1.继承概述 继承是Java面向对象的三大特征之一,是比较重要的一部分,与后面的多态有着直接的关系.继承就是子类继承父类的特征和行为,使得子类对象(实例)具有父类的实例域和方法,或子类从父类继承方法, ...

  5. 0x02 递推与递归

    [例题]CH0301 递归实现指数型枚举 #include <iostream> #include <cstdio> #include <algorithm> #i ...

  6. ssm访问不了后台

    最近整理ssm,写完demo案例,无论如何都访问不了后台,百度了好多,终于解决了问题所在 先看页面信息: 因为一直报404错误,一直找路径是不是弄错了,或配置文件弄错了,仅仅这个配置文件都看了无数遍, ...

  7. Excel批量导入(导出同理)

    在做JavaWeb中添加数据使我们在所难免会遇到的,在大数据的环境下批量添加和批量删除是必须的,而批量删除只需要获取到我们需要删除的ID就可以了,在批量添加中我们就会遇到问题,问题是得到批量的数据,这 ...

  8. (十四)c#Winform自定义控件-键盘(一)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  9. 搞懂Go垃圾回收

    本文主要介绍了垃圾回收的概念,Golang GC的垃圾回收算法和工作原理,看完本文可以让你对Golang垃圾回收机制有个全面的理解.由于本人不了解其他语言的GC,并未对比其他语言的垃圾回收算法,需要的 ...

  10. Oracle 主键、联合主键的查询与创建

    --查询某个表是否有唯一主键 select cu.* from user_cons_columns cu, user_constraints au where cu.constraint_name = ...