P4570 [BJWC2011]元素 线性基 + 贪心
题意
给定n个物品,每个物品有一个编号和价值,问如何取使得拿到的物品价值总和最大,并且取得物品的编号的子集异或和不能为0。
思路
这是个贪心,我们先按照价值从大到小排序,然后贪心地取,如果当前要取的物品的编号和之前取的存在异或为0的情况,我们就丢弃这个物品,否则加入。判断异或为0可以用线性基来做。
具体证明参考
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4) #include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/
const int maxn = ;
struct node{
ll id;
int val;
}a[maxn];
bool cmp(node a,node b){
return a.val > b.val;
}
ll p[];
bool check(ll x){
for(int i=; i>=; i--) {
if((x & (1ll << i) ) > )
{
if(p[i] >-) x ^= p[i];
else {
p[i] = x;
return true;
}
}
}
return false;
} int main(){
memset(p, -, sizeof(p));
int n; scanf("%d", &n);
for(int i=; i<=n; i++) {
scanf("%lld%d", &a[i].id, &a[i].val);
}
sort(a+, a++n,cmp);
int sum = ;
for(int i=; i<=n; i++) {
if(check(a[i].id)) sum += a[i].val;
}
printf("%d\n", sum); return ;
}
P4570 [BJWC2011]元素 线性基 + 贪心的更多相关文章
- 【题解】P4570 [BJWC2011]元素 - 线性基 - 贪心
P4570 [BJWC2011]元素 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 给你 \(n\) 个二元组 \( ...
- BZOJ 2460 & 洛谷 P4570 [BJWC2011]元素 (线性基 贪心)
题目链接: 洛谷 BZOJ 题意 给定 \(n\) 个矿石,每个矿石有编号和魔力值两种属性,选择一些矿石,使得魔力值最大且编号的异或和不为 0. 思路 线性基 贪心 根据矿石的魔力值从大到小排序. 线 ...
- 洛谷P4570 [BJWC2011]元素 线性基
正解:线性基+贪心 解题报告: 传送门! 这题其实没什么好写题解的,,,显然贪心一下尽量选魔力大的,不用证明趴挺显然的来着 所以就直接按魔力排个序,插入线性基里面,能插就加个贡献,over 放下代码趴 ...
- P4570 [BJWC2011]元素 (线性基)
题意:n个石头 每个石头有a,b两个属性 要求选出一些石头使得没有一个子集的a属性xor和为0 且b属性和最大 题解:线性基例题了.. 好像需要理解一些性质 1.原序列里任一数都可有由线性基xor得到 ...
- BZOJ.2460.[BeiJing2011]元素(线性基 贪心)
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...
- [BJWC2011]元素 线性基
题面 题面 题解 一个方案合法,当且仅当选取的01串凑不出0. 因此就是要使得选取的01串全在线性基内,具体原因可以看这道题:[CQOI2013]新Nim游戏 线性基 要使得魔力值最大,只需要按法力值 ...
- [bzoj2460] [BeiJing2011]元素(线性基+贪心)
题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...
- 洛谷P4570 [BJWC2011]元素(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 考虑贪心 将所有的矿石按价值从大到小排序 如果一块矿石不会和之前的编号异或为0就加入 这个只要判一下它能不能加进线性基里就可以了 据说这个贪心的证明 ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
随机推荐
- hdoj 3732 Ahui Writes Word (多重背包)
之前在做背包的题目时看到了这道题,一看,大喜,这不是裸裸的01背包吗!! 然后华丽丽的超时,相信很多人也和我一样没有考虑到数据量的大小. 时隔多日,回过头来看这道题,依旧毫无头绪....不过相比之前 ...
- js中数组和对象的合并
1 数组合并 1.1 concat 方法 1 2 3 4 var a=[1,2,3],b=[4,5,6]; var c=a.concat(b); console.log(c);// 1,2,3,4,5 ...
- 直方图均衡基本原理及Python实现
1. 基本原理 通过一个变换,将输入图像的灰度级转换为`均匀分布`,变换后的灰度级的概率密度函数为 $$P_s(s) = \frac{1}{L-1}$$ 直方图均衡的变换为 $$s = T(r) = ...
- Django中自定义admin---Xadmin的实现
在Django框架中,自带一个后台管理页面admin,这个管理页面很全,但是,有些并不是我们需要的,所以我们可以根据admin的实现流程来自定义自己的需求,即根据admin的实现方式来实现自定制--X ...
- 低版本IE兼容 H5+CSS3 方案
[主要是针对ie6 7 8对支持和让老浏览器支持html5+css3的一些js脚本] html5shiv.js // 让IE8及耕地版本的IE识别section,article,nav等html5元 ...
- 转载 | SVG向下兼容优雅降级方法
本文引自:http://www.zhangxinxu.com/wordpress/2013/09/svg-fallbacks/ 1.svg image标签降级技术 <svg width=&quo ...
- PHP版本的区别与用法详解
在我们安装PHP模块时,有时需要注意PHP编译的版本,下面讲解下PHP中VC6.VC9.TS.NTS版本的区别与用法详解,介绍php的两种执行方式. 1. VC6与VC9的区别:VC6版本是使用Vis ...
- Codeforces 868E Policeman and a Tree
题意简述 给你一颗有n个点的树,每条边有边权,有一个警察一开始在点S,他的速度是1,即通过一条长度为x的边要花x单位时间. 有m个罪犯,一开始第i个在点x[i],他们的速度无限快. 如果罪犯和警察到达 ...
- Vue cli2.0 项目中使用Monaco Editor编辑器
monaco-editor 是微软出的一条开源web在线编辑器支持多种语言,代码高亮,代码提示等功能,与Visual Studio Code 功能几乎相同. 在项目中可能会用带代码编辑功能,或者展示代 ...
- 在linux中部署项目并创建shell脚本
1.首先要在idea中父工程maven包下执行clean生成的target包 2.执行package打包,打包时候讲test勾去掉 3.将target包中生成的jar包cp出来 此处注意打包时必须要保 ...