MATLAB粒子群优化算法(PSO)
MATLAB粒子群优化算法(PSO)
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
一、介绍
- 粒子群优化算法(Particle Swarm Optimization Algorithm)是一种群智能算法,为了寻求全局最优。群体迭代,粒子在解空间追随最优的粒子进行搜索。
- 粒子群算法的思想源于对鸟群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。
- 马良教授在他的著作《蚁群优化算法》一书的前言中写到:“自然界的蚁群、鸟群、鱼群、羊群、牛群、蜂群等,其实时时刻刻都在给予我们以某种启示,只不过我们常常忽略了大自然对我们的最大恩赐!”
- 设想这样一个场景:一群鸟在随机搜索食物,已知
- (1)在这块区域里只有一块食物; (2)所有的鸟都不知道食物在哪里; (3)但它们能感受到当前的位置离食物还有多远.
- 那么:找到食物的最优策略是什么呢?
- 搜寻目前离食物最近的鸟的周围区域,根据自己飞行的经验判断食物的所在。
- PSO的基础: 信息的社会共享
二、算法思路
- 每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个D维空间进行搜索。
- 所有的粒子都由一个fitness function 确定适应值以判断目前的位置好坏。
- 每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。
- 每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。
三、算法流程与伪代码
- c1: weight of local information
- c2: weight of global information
- p: particle's position
- v: path direction
- rand: random variable, 0<rand<1
- number of particles: 10~50
- c1+c2=4
- v=v+c1*rand*(pbest-p)+c2*rand*(gbest-p);中右边第一项v: inertia, c1*rand*(pbest-p): personal influence, c2*rand*(gbest-p): social influence.
四、MATLAB程序
粒子群优化算法求解函数y=x+x*sin(x)在[-10, 10]的最大值.
pso.m
function [best_x, best_y]=pso()
%find the max value of a function
%Author: kailugaji https://www.cnblogs.com/kailugaji/
posMax=10;posMin=-10; %range of feasible solution
x=posMin:0.1:posMax;
y=my_fun(x); %object function
plot(x,y);hold on; %plot function
popsize=30; %number of particles
max_iter=100; %maximum number of iterations
position=rand(popsize,1);
position=position*20-ones(popsize,1)*10; %particle's position
vMax=1;vMin=-1; %range of velocity
velosity=2*rand(popsize,1)-1; %path direction
pbest=position; %current optimum
gbest=position(1); %global optimum
wBegin=1;wEnd=0.05;
c1=2; %weight of local information
c2=2; %weight of global information
for i=1:max_iter
position_new=position+velosity; %change direction of each particle
velosity_new=(wEnd+(wBegin-wEnd)*(100-i)/100).*velosity+c1*rand().*(position-pbest.*ones(popsize,1))+c2*rand().*(position-gbest.*ones(popsize,1)); %inertia+personal influence+social influence
for j=1:popsize
if(position_new(j)>posMax)
position_new(j)=posMax;
end
if(position_new(j)<posMin)
position_new(j)=posMin;
end
if(velosity_new(j)>vMax)
velosity_new(j)=vMax;
end
if(velosity_new(j)<vMin)
velosity_new(j)=vMin;
end
if(my_fun(position_new(j))>my_fun(pbest(j)))
pbest(j)=position_new(j);
end
if(my_fun(position_new(j))>my_fun(gbest))
gbest=position_new(j);
end
end
position=position_new;
velosity=velosity_new;
end
plot(gbest,my_fun(gbest),'or');
best_x=gbest;
best_y=my_fun(gbest);
my_fun.m
function y=my_fun(x)
y=x+x.*sin(x);
五、实验结果
>> [best_x, best_y]=pso()
best_x =
8.0051
best_y =
15.9190
当x=8.0051时,粒子群优化算法终止迭代,此时获得的最大值为y=15.9190。
六、参考文献
MATLAB粒子群优化算法(PSO)的更多相关文章
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...
- 粒子群优化算法PSO及matlab实现
算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...
- 数值计算:粒子群优化算法(PSO)
PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...
- 粒子群优化算法(PSO)的基本概念
介绍了PSO基本概念,以及和遗传算法的区别: 粒子群算法(PSO)Matlab实现(两种解法)
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(四)
作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,介绍了PSO在FS中的重要性和一些常用的方法.FS与离散化的背景,介绍了EPSO与PPS ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(三)
作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,总览的介绍了PSO在FS中的重要性和一些常用的方法,介绍了FS与离散化的背景,介绍本文所 ...
- [matlab] 6.粒子群优化算法
粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在19 ...
- 计算智能(CI)之粒子群优化算法(PSO)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...
随机推荐
- retrying failed action with response code: 403
0x00 Event [2019-09-24T19:22:31,655][INFO ][logstash.outputs.elasticsearch] retrying failed action w ...
- PHP代码篇(六)--如何根据邀请人id查询满足条件的会员上级
说,如果有一个会员表,每一个会员都有一个邀请人from_id字段(记录该会员是谁邀请的),知道一个会员id,现在需要查询某一个会员是否是该会员的下级. 表如下: 一.当下需求 1.我们需要知道会员id ...
- sqlserver取字符串拼音首字母
sqlserver 使用函数获取一个字符串的拼音首字母 create function dbo.fn_getpinyin ( @str nvarchar(max) ) returns nvarchar ...
- May 26th, 2019. Week 22nd, Sunday
A real loser is somebody that's so afraid of not winning, they don't even try. 真正的失败者,是那些因为害怕不能成功,就连 ...
- 断点调试debugger
断点调试有两种打点方式 (1)控制台手动打点 (2)代码中添加 debugger打点 .
- Java 的synchronized关键字使用
synchronized 关键字是实现锁的一种方式,是在jvm层面实现的非公平锁,以下是使用synchronized的四种方式 synchronized 特性: 1.非公平锁 2.可重入性 1.作用在 ...
- LG3092 「USACO2013NOV」No Change 状压DP
问题描述 https://www.luogu.org/problem/P3092 题解 观察到 \(k \le 16\) ,自然想到对 \(k\) 状压. 设 \(opt[i]\) 代表使用硬币状况为 ...
- mongodb重点知识总结
Mongodb总结 一.NoSQL型数据库介绍 NoSQL,泛指非关系型的数据库.NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题.NoSQL(NoSQL ...
- 【转】Java中的关键字 transient
阅读目录 先解释下Java中的对象序列化 关于transient关键字 举个例子 参考资料 先解释下Java中的对象序列化 在讨论transient之前,有必要先搞清楚Java中序列化的含义: Jav ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造
C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...