MATLAB粒子群优化算法(PSO)

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

一、介绍

  • 粒子群优化算法(Particle Swarm Optimization Algorithm)是一种群智能算法,为了寻求全局最优。群体迭代,粒子在解空间追随最优的粒子进行搜索。
  • 粒子群算法的思想源于对鸟群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。
  • 马良教授在他的著作《蚁群优化算法》一书的前言中写到:“自然界的蚁群、鸟群、鱼群、羊群、牛群、蜂群等,其实时时刻刻都在给予我们以某种启示,只不过我们常常忽略了大自然对我们的最大恩赐!”
  • 设想这样一个场景:一群鸟在随机搜索食物,已知
  • (1)在这块区域里只有一块食物;  (2)所有的鸟都不知道食物在哪里;  (3)但它们能感受到当前的位置离食物还有多远.
  • 那么:找到食物的最优策略是什么呢?
  • 搜寻目前离食物最近的鸟的周围区域,根据自己飞行的经验判断食物的所在。

  • PSO的基础: 信息的社会共享

二、算法思路

  1. 每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个D维空间进行搜索。
  2. 所有的粒子都由一个fitness function 确定适应值以判断目前的位置好坏。
  3. 每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。
  4. 每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。

三、算法流程与伪代码

  • c1: weight of local information
  • c2: weight of global information
  • p: particle's position
  • v: path direction
  • rand: random variable, 0<rand<1
  • number of particles: 10~50
  • c1+c2=4
  • v=v+c1*rand*(pbest-p)+c2*rand*(gbest-p);中右边第一项v: inertia, c1*rand*(pbest-p): personal influence, c2*rand*(gbest-p): social influence.

四、MATLAB程序

粒子群优化算法求解函数y=x+x*sin(x)在[-10, 10]的最大值.

pso.m

function [best_x, best_y]=pso()
%find the max value of a function
%Author: kailugaji https://www.cnblogs.com/kailugaji/
posMax=10;posMin=-10; %range of feasible solution
x=posMin:0.1:posMax;
y=my_fun(x); %object function
plot(x,y);hold on; %plot function
popsize=30; %number of particles
max_iter=100; %maximum number of iterations
position=rand(popsize,1);
position=position*20-ones(popsize,1)*10; %particle's position
vMax=1;vMin=-1; %range of velocity
velosity=2*rand(popsize,1)-1; %path direction
pbest=position; %current optimum
gbest=position(1); %global optimum
wBegin=1;wEnd=0.05;
c1=2; %weight of local information
c2=2; %weight of global information
for i=1:max_iter
position_new=position+velosity; %change direction of each particle
velosity_new=(wEnd+(wBegin-wEnd)*(100-i)/100).*velosity+c1*rand().*(position-pbest.*ones(popsize,1))+c2*rand().*(position-gbest.*ones(popsize,1)); %inertia+personal influence+social influence
for j=1:popsize
if(position_new(j)>posMax)
position_new(j)=posMax;
end
if(position_new(j)<posMin)
position_new(j)=posMin;
end
if(velosity_new(j)>vMax)
velosity_new(j)=vMax;
end
if(velosity_new(j)<vMin)
velosity_new(j)=vMin;
end
if(my_fun(position_new(j))>my_fun(pbest(j)))
pbest(j)=position_new(j);
end
if(my_fun(position_new(j))>my_fun(gbest))
gbest=position_new(j);
end
end
position=position_new;
velosity=velosity_new;
end
plot(gbest,my_fun(gbest),'or');
best_x=gbest;
best_y=my_fun(gbest);

my_fun.m

function y=my_fun(x)
y=x+x.*sin(x);

五、实验结果

>> [best_x, best_y]=pso()
best_x =
8.0051
best_y =
15.9190

当x=8.0051时,粒子群优化算法终止迭代,此时获得的最大值为y=15.9190。

六、参考文献

MATLAB粒子群优化算法(PSO)的更多相关文章

  1. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...

  2. 粒子群优化算法PSO及matlab实现

    算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...

  3. 数值计算:粒子群优化算法(PSO)

    PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...

  4. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...

  5. 粒子群优化算法(PSO)的基本概念

    介绍了PSO基本概念,以及和遗传算法的区别: 粒子群算法(PSO)Matlab实现(两种解法)

  6. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(四)

    作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,介绍了PSO在FS中的重要性和一些常用的方法.FS与离散化的背景,介绍了EPSO与PPS ...

  7. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(三)

    作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,总览的介绍了PSO在FS中的重要性和一些常用的方法,介绍了FS与离散化的背景,介绍本文所 ...

  8. [matlab] 6.粒子群优化算法

    粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在19 ...

  9. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

随机推荐

  1. LeetCode刷题191120

    博主渣渣一枚,刷刷leetcode给自己瞅瞅,大神们由更好方法还望不吝赐教.题目及解法来自于力扣(LeetCode),传送门. 算法: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位 ...

  2. FAQ – Automatic Undo Management (AUM) / System Managed Undo (SMU) (Doc ID 461480.1)

    FAQ – Automatic Undo Management (AUM) / System Managed Undo (SMU) (Doc ID 461480.1) APPLIES TO: Orac ...

  3. Git 在小团队中的管理流程

    目标读者:了解 Git 的基本概念,能够使用 Git 进行基本的本地和远程操作. 有关 Git 的基础知识可以参见 知乎回答-怎样使用 GitHub?,天猪(刘勇)给出了一些很好的学习资料. 本文介绍 ...

  4. CodeForces - 763A(并查集/思维)

    题意 https://vjudge.net/problem/CodeForces-763A 一棵无根树中各个节点被染上了一种颜色c[i] 现在让你选择一个点作为根节点,使得这个根节点的所有儿子满足以该 ...

  5. 《Web Development with Go》实现一个简单的rest api

    设计模式完了之后,应该实现具体的应用了. 设计模式还得没事就要复习. web应用,学习的是网上的一本书. <Web Development with Go> package main im ...

  6. wbr 标签实现连续英文字符的精准换行你知道吗?

    1.一般情况下的换行: word-break:break-all或者word-wrap:break-word <p>大家<wbr>想要<wbr>实现<wbr& ...

  7. 深入理解typescript的Functions

    Functions Introduction # Functions are the fundamental building block of any application in JavaScri ...

  8. MySQL字符类型学习笔记

    目录 一.字符集和字符编码 1.1.字符集 1.2.字符编码 二.字符集排序规则 2.1.排序规则定义 2.2 .排序规则特征 三.CHAR和VARCHAR 3.1.CHAR类型 3.2.VARCHA ...

  9. 使用logging模块进行封装,让bug无处遁寻

    import logging from scripts.handle_config import conf from scripts.constants import LOGS_DIR class H ...

  10. Zookeeper学习记录及Java客户端连接示例

    1. Zookeeper 1.1 简介 ZooKeeper is a centralized service for maintaining configuration information, na ...