【Luogu P1439】最长公共子序列(LCS)
Luogu P1439
令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列
可以得到状态转移方程:
if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1;
dp[i][j]=max(dp[i][j],dp[i-1][j],dp[i][j-1]);
时空复杂度都为O(n2)
对于本题这种做法显然是无法接受的。
我们可以对这个题目进行转化。仔细看题,可以发现a,b两个序列都是1-n的排列。
那么,我们可以利用映射,将a中的数一一映射成为1,2,3,4,5……,n
再把b中的数一一对应更改。由于a中的数是升序的,所以b中的最长上升子序列的长度就是a与b的最长公共子序列。LCS问题就转化成了LIS问题。
例如样例
a的 3 2 1 4 5
映射为1 2 3 4 5
则b从1 2 3 4 5
变为3 2 1 4 5
结合上面的分析就会变得很容易理解了。
#include<algorithm>
#include<cstdio>
using namespace std;
int n,a[100005],b[100005],k[100005],dp[100005],ans;
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
k[a[i]]=i;
}
for (int i=1;i<=n;i++)
{
scanf("%d",&b[i]);
b[i]=k[b[i]];
}
dp[1]=1;
for (int i=2;i<=n;i++)
{
for (int j=1;j<i;j++)
{
if (b[i]>b[j]) dp[i]=max(dp[i],dp[j]+1);
else dp[i]=max(1,dp[i]);
}
}
for (int i=1;i<=n;i++)
ans=max(ans,dp[i]);
printf("%d",ans);
return 0;
}
这个动态规划可以很轻松地写出来,但是我们发现时间还是不够优秀。
那么我们就要对这个算法进行优化。对于LIS问题,有一种广为人知的O(nlogn)的解法。
dp[i]中存储长度为i的LIS的最后一个数。
如果符合单调上升就直接增长长度并记录,否则就利用STL二分查找出dp数组中第一个大于b[i]的位置,替换它。
举个例子,例如 3 6 2 4 7 8
一开始的序列{3},接着变成{3,6}
遇到2之后我们将3替换{2,6},为什么可以进行替换呢?
因为后面还有一个4可以替换掉6,构成一条更优的序列。(保证结尾尽可能小,就能保证序列尽可能优)
如果后面没有4呢?那么也没有关系,因为这个2即使修改了也对答案没有任何影响。
(想一想为什么)
dp[1]=b[1];
len=1;
for (int i=2;i<=n;i++)
{
if (b[i]>dp[len]) dp[++len]=b[i];//记录并增长长度。
else
{
int x=upper_bound(dp+1,dp+1+len,b[i])-dp;
dp[x]=b[i];
//利用STL二分查找出dp数组中第一个大于b[i]的位置,替换它。
}
}
完整代码如下:
#include<algorithm>
#include<cstdio>
using namespace std;
int n,a[100005],b[100005],k[100005],dp[100005],ans,len;
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
k[a[i]]=i;//映射
}
for (int i=1;i<=n;i++)
{
scanf("%d",&b[i]);
b[i]=k[b[i]];//对应修改
}
dp[1]=b[1];
len=1;
for (int i=2;i<=n;i++)
{
if (b[i]>dp[len]) dp[++len]=b[i];
else
{
int x=upper_bound(dp+1,dp+1+len,b[i])-dp;
dp[x]=b[i];
}
}
printf("%d",len);
return 0;
}
【Luogu P1439】最长公共子序列(LCS)的更多相关文章
- Luogu 3402 最长公共子序列(二分,最长递增子序列)
Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 51nod 1006 最长公共子序列Lcs 【LCS/打印path】
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 每日一题-——最长公共子序列(LCS)与最长公共子串
最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...
- 51nod 1006:最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- Veins(车载通信仿真框架)入门教程
Veins入门教程——教你如何下手研究 目录 Veins入门教程——教你如何下手研究 目录 废话少说! 讲解omnetpp.ini!(挑关键的) 讲解RSUExampleScnario.ned! 注意 ...
- 一分钟带你了解JWT认证!
目录 一.JWT简介 二.JWT认证和session认证的区别 三.JWT认证流程 四.JWT组成 五.JWT使用场景 一.JWT简介 JSON Web Token(JWT)是一个开放的标准(RFC ...
- 面经-科大讯飞AI研究院
面试时间:2019.06.27 电话面试 面试岗位:计算机视觉算法工程师/一面 面试时长:45分钟 面试内容: 自我介绍 简历中选择一个项目介绍-视频召回 问及项目中的语音.人脸.标题.模态缺失相关细 ...
- Bash shell类型
登录shell(需要密码) 正常通过某一个终端来登录,需要输入用户名和密码. 使用su - username 使用su -l username 非登录shell(不需要密码) su userna ...
- xss代码集
</script>"><script>prompt(1)</script> </ScRiPt>"><ScRiPt& ...
- 有关logistic(sigmoid)函数回归
在神经网络中,经常用到sigmoid函数,y = 1 / (1+e-x) 作为下一级神经元的激活函数,x也就是WX(下文,W以θ符号代替)矩阵计算结果. 这个函数通常用在进行分类,通常分为1或0的逻辑 ...
- CSPS_107
和教练谈话.jpg T1 枚举不动位置,枚举字母,可以$O(n^2)$ T2 暴筛 70 但是考虑枚举$m^{\frac{1}{3}}$之内的质数(怎么想到啊) 把它们消去以后,设剩下数x 若x含有平 ...
- 如何在 Spring/Spring Boot 中做参数校验?你需要了解的都在这里!
本文为作者原创,如需转载请在文首著名地址,公众号转载请申请开白. springboot-guide : 适合新手入门以及有经验的开发人员查阅的 Spring Boot 教程(业余时间维护中,欢迎一起维 ...
- spring boot打包成war包的页面该放到哪里?
背景 经常有朋友问我,平时都是使用spring mvc,打包成war包发布到tomcat上,如何快速到切换到spring boot的war或者jar包上? 先来看看传统的war包样式是什么样子的? 1 ...
- FastDFS图片服务器单机安装步骤
前面已经讲 一张图秒懂微服务的网络架构,通过此文章可以了解FastDFS组件中单机安装流程. 单机版架构图 以下为单机FastDFS安装步骤 一.环境准备 CentOS 7.X libfastcomm ...