1.创建命名空间

新建一个yaml文件命名为monitor-namespace.yaml,写入如下内容:

apiVersion: v1
kind: Namespace
metadata:
name: monitoring

执行如下命令创建monitoring命名空间:

kubectl create -f monitor-namespace.yaml

2.创建ClusterRole

你需要对上面创建的命名空间分配集群的读取权限,以便Prometheus可以通过Kubernetes的API获取集群的资源目标。

新建一个yaml文件命名为cluster-role.yaml,写入如下内容:

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: prometheus
rules:
- apiGroups: [""]
resources:
- nodes
- nodes/proxy
- services
- endpoints
- pods
verbs: ["get", "list", "watch"]
- apiGroups:
- extensions
resources:
- ingresses
verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: default
namespace: monitoring

执行如下命令创建:

kubectl create -f cluster-role.yaml

3.创建Config Map

我们需要创建一个Config Map保存后面创建Prometheus容器用到的一些配置,这些配置包含了从Kubernetes集群中动态发现pods和运行中的服务。
新建一个yaml文件命名为config-map.yaml,写入如下内容:

apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-server-conf
labels:
name: prometheus-server-conf
namespace: monitoring
data:
prometheus.yml: |-
global:
scrape_interval: 5s
evaluation_interval: 5s
scrape_configs:
- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https - job_name: 'kubernetes-nodes'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${}/proxy/metrics - job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $:$
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name - job_name: 'kubernetes-cadvisor'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${}/proxy/metrics/cadvisor - job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $:$
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name

执行如下命令进行创建:

kubectl create -f config-map.yaml -n monitoring

4.创建Deployment模式的Prometheus

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: prometheus-deployment
namespace: monitoring
spec:
replicas:
template:
metadata:
labels:
app: prometheus-server
spec:
containers:
- name: prometheus
image: prom/prometheus:v2.3.2
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus/"
ports:
- containerPort:
volumeMounts:
- name: prometheus-config-volume
mountPath: /etc/prometheus/
- name: prometheus-storage-volume
mountPath: /prometheus/
volumes:
- name: prometheus-config-volume
configMap:
defaultMode:
name: prometheus-server-conf
- name: prometheus-storage-volume
emptyDir: {}

使用如下命令部署:

kubectl create -f prometheus-deployment.yaml --namespace=monitoring

部署完成后通过dashboard能够看到如下的界面:

5.连接Prometheus

这里有两种方式

1.通过kubectl命令进行端口代理

2.针对Prometheus的POD暴露一个服务,推荐此种方式
首先新建一个yaml文件命名为prometheus-service.yaml,写入如下内容:

apiVersion: v1
kind: Service
metadata:
name: prometheus-service
spec:
selector:
app: prometheus-server
type: NodePort
ports:
- port:
targetPort:
nodePort:

执行如下命令创建服务:

kubectl create -f prometheus-service.yaml --namespace=monitoring

通过以下命令查看Service的状态,我们可以看到暴露的端口是30909:

kubectl get svc -n monitoring
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus-service NodePort 10.101.186.82 <none> :/TCP 100m

现在可以通过浏览器访问【http://虚拟机IP:30909】,看到如下界面,现在可以点击 status –> Targets,马上就可以看到所有Kubernetes集群上的Endpoint通过服务发现的方式自动连接到了Prometheus。:

我们还可以通过图形化界面查看内存:

OK,到这里Prometheus部署就算完成了,但是数据的统计明显不够直观,所以我们需要使用Grafana来构建更加友好的监控页面。

6.搭建Grafana

新建以下yaml文件:grafana-dashboard-provider.yaml

apiVersion: v1
kind: ConfigMap
metadata:
name: grafana-dashboard-provider
namespace: monitoring
data:
default-dashboard.yaml: |
- name: 'default'
org_id:
folder: ''
type: file
options:
folder: /var/lib/grafana/dashboards

grafana.yaml:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: grafana
namespace: monitoring
labels:
app: grafana
component: core
spec:
replicas:
template:
metadata:
labels:
app: grafana
component: core
spec:
containers:
- image: grafana/grafana:5.0.
name: grafana
ports:
- containerPort:
resources:
limits:
cpu: 100m
memory: 100Mi
requests:
cpu: 100m
memory: 100Mi
volumeMounts:
- name: grafana-persistent-storage
mountPath: /var
- name: grafana-dashboard-provider
mountPath: /etc/grafana/provisioning/dashboards
volumes:
- name: grafana-dashboard-provider
configMap:
name: grafana-dashboard-provider
- name: grafana-persistent-storage
emptyDir: {}

grafana-service.yaml:

apiVersion: v1
kind: Service
metadata:
labels:
name: grafana
name: grafana
namespace: monitoring
spec:
type: NodePort
selector:
app: grafana
ports:
- protocol: TCP
port:
targetPort:
nodePort:

执行如下命令进行创建:

kubectl apply -f grafana-dashboard-provider.yaml
kubectl apply -f grafana.yaml
kubectl apply -f grafana-service.yaml

部署完成后通过Kubernetes Dashboard可以看到:

根据服务暴露出来的端口30300通过浏览器访问【http://虚拟机IP:30300】看到如下界面:

输入用户名和密码(admin/admin)即可登录。

接着我们配置数据源:

然后导入Dashboards:

将JSON文件上传

grafana-dashboard.json (百度云链接 https://pan.baidu.com/s/1YtfD3s1U_d6Yon67qjihmw   密码:n25f)

然后点击导入:

然后就可以看到Kubernetes集群的监控数据了:

还有一个资源统计的Dashboards:

kubernetes-resources-usage-dashboard.json

OK,Prometheus的监控搭建到此结束。

参考资料:https://www.jianshu.com/p/c2e549480c50

Kubernetes 系列(六):Kubernetes部署Prometheus监控的更多相关文章

  1. Kubernetes 系列(五):Prometheus监控框架简介

    由于容器化和微服务的大力发展,Kubernetes基本已经统一了容器管理方案,当我们使用Kubernetes来进行容器化管理的时候,全面监控Kubernetes也就成了我们第一个需要探索的问题.我们需 ...

  2. 基于k8s集群部署prometheus监控ingress nginx

    目录 基于k8s集群部署prometheus监控ingress nginx 1.背景和环境概述 2.修改prometheus配置 3.检查是否生效 4.配置grafana图形 基于k8s集群部署pro ...

  3. 基于k8s集群部署prometheus监控etcd

    目录 基于k8s集群部署prometheus监控etcd 1.背景和环境概述 2.修改prometheus配置 3.检查是否生效 4.配置grafana图形 基于k8s集群部署prometheus监控 ...

  4. 部署prometheus监控kubernetes集群并存储到ceph

    简介 Prometheus 最初是 SoundCloud 构建的开源系统监控和报警工具,是一个独立的开源项目,于2016年加入了 CNCF 基金会,作为继 Kubernetes 之后的第二个托管项目. ...

  5. Kubernetes 1.13.3 部署 Prometheus+Grafana-7.5.2(最新版本踩坑)

    本教程直接在 Kubernetes 1.13.3 版本上安装 Prometheus 和 Grafana-7.5.2,至于它们的原理和概念就不再赘述,这里就直接开始操作. Git 下载相关 YAML 文 ...

  6. Kubernetes系列02—Kubernetes设计架构和设计理念

    本文收录在容器技术学习系列文章总目录 1.Kubernetes设计架构 Kubernetes集群包含有节点代理kubelet和Master组件(APIs, scheduler, etc),一切都基于分 ...

  7. Kubernetes系列:Kubernetes Dashboard

    15.1.Dashboard 作为Kube认得Web用户界面,用户可以通过Dashboard在Kubernetes集群中部署容器化的应用,对应用进行问题处理和管理,并对集群本身进行管理.通过Dashb ...

  8. Security基础(六):部署Zabbix监控平台、配置及使用Zabbix监控系统、自定义Zabbix监控项目、实现Zabbix报警功能

    一.部署Zabbix监控平台 目标: 本案例要求部署一台Zabbix监控服务器,一台被监控主机,为进一步执行具体的监控任务做准备: 在监控服务器上安装LAMP环境    修改PHP配置文件,满足Zab ...

  9. kubernetes系列06—kubernetes资源清单定义入门

    本文收录在容器技术学习系列文章总目录 1.认识kubernetes资源 1.1 常用资源/对象 workload工作负载型资源:pod,ReplicaSet,Deployment,StatefulSe ...

随机推荐

  1. effective java 3th 序

    正本基本是自己翻译,翻译绝对有错误,就是这么自信,看的时候,自己注意下,如果感觉有语句不通,那么可能就是我翻译的出现了问题,可以自己翻找原文对比下. 其中自己的见解,我写在脚注中. 在 1997 年, ...

  2. 交完论文才发现spss数据分析做错了

    上周,终于把毕业论文交给导师了.然而,今天导师却邮件我,叫我到他办公室谈谈.具体是谈什么呢?我百思不得其解:对论文几次大修小修后,重复率已经低于学校的上限了,论文结构也很完整,我已经在做答辩的ppt了 ...

  3. Servlet,过滤器和监听器的配置和使用

    一.什么是Servlet Servlet使用Java语言实现的程序,运行于支持Java语言的Web服务器或者应用服务器中.Servlet先于JSP出现,提供和客户端动态交互的功能.Servlet可以处 ...

  4. VMware虚拟机安装Linux系统详细教程

    VMware14虚拟机安装RedHad6系统步骤 redhat网盘资源:链接:https://pan.baidu.com/s/1GlT20vevqbZ9qTxsGH1ZzA 提取码:oh57 如果网盘 ...

  5. codeforces 688 E. The Values You Can Make(01背包+思维)

    题目链接:http://codeforces.com/contest/688/problem/E 题解:设dp[s1][s2]表示s1状态下出现s2是否合理.那么s1显然可以更具01背包来得到状态.首 ...

  6. == != === equals() 区别

    java中的数据类型,可分为两类: 1.基本数据类型,也称原始数据类型. byte,short,char,int,long,float,double,boolean,他们之间的比较,应用双等号(==) ...

  7. pandas数据分析输出excel产生文本形式存储的百分比数据,如何处理?

    关键词: python.pandas.to_excel.文本形式存储的数据 需求描述: 我用 python pandas 写了数据统计与分析脚本,并把计算结果用 pandas 的 to_excel() ...

  8. 033 模块4-PyInstaller库的使用

    目录 一.PyInstaller库基本介绍 1.1 PyInstaller库概述 1.2 pip的使用 1.3 pip install pyinstaller (cmd命令行) 二.PyInstall ...

  9. 粗糙版ORM(附详细注释)

    目录 ORM 其他 ORM代码 数据库表代码 mysql代码 db/models.py db/pymysql_opreator.py ORM 作为数据库表记录 和 python中对象的映射关系中间件 ...

  10. linux非root用户下安装软件,搭建生产环境

    之前的用实验室的服务器,因为某些原因,使用的用户没有root权限.linux的非root用户很多软件无法安装,非常的不方便.我的方法是使用brew来代替系统的包管理工具.brew是最先用在mac上的包 ...