布隆过滤器的demo
/**
* 缓存击穿
* @author
*
*/
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"classpath:config/spring/spring-dao.xml",
"classpath:config/spring/spring-bean.xml",
"classpath:config/spring/spring-redis.xml"})
public class CacheBreakDownTest {
private static final Logger logger = LoggerFactory.getLogger(CacheBreakDownTest.class); private static final int THREAD_NUM = 100;//线程数量 @Resource
private UserDao UserDao; @Resource
private RedisTemplate redisTemplate; private int count = 0; //初始化一个计数器
private CountDownLatch countDownLatch = new CountDownLatch(THREAD_NUM); private BloomFilter<String> bf; List<UserDto> allUsers; @PostConstruct
public void init(){
//将数据从数据库导入到本地
allUsers = UserDao.getAllUser();
if(allUsers == null || allUsers.size()==0){
return;
}
//创建布隆过滤器(默认3%误差)
bf = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), allUsers.size());
//将数据存入布隆过滤器
for(UserDto userDto : allUsers){
bf.put(userDto.getUserName());
}
} @Test
public void cacheBreakDownTest(){
for(int i=0;i<THREAD_NUM;i++){
new Thread(new MyThread()).start();
//计数器减一
countDownLatch.countDown();
}
try {
Thread.currentThread().join();
} catch (InterruptedException e) {
e.printStackTrace();
}
} class MyThread implements Runnable{ @Override
public void run() {
try {
//所有子线程等待,当子线程全部创建完成再一起并发执行后面的代码
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
//随机产生一个字符串
String randomUser = UUID.randomUUID().toString();
// String randomUser = allUsers.get(new Random().nextInt(allUsers.size())).getUserName();
String key = "Key:"+randomUser; //如果布隆过滤器中不存在这个用户直接返回,将流量挡掉
if(!bf.mightContain(randomUser)){
System.out.println("bloom filter don't has this user");
return;
}
//查询缓存,如果缓存中存在直接返回缓存数据
ValueOperations<String,String> operation = (ValueOperations<String, String>) redisTemplate.opsForValue();
synchronized (countDownLatch) {
Object cacheUser = operation.get(key);
if(cacheUser!=null){
System.out.println("return user from redis");
return;
}
//如果缓存不存在查询数据库
List<UserDto> user = UserDao.getUserByUserName(randomUser);
if(user == null || user.size() == 0){
return;
}
//将mysql数据库查询到的数据写入到redis中
System.out.println("write to redis");
operation.set("Key:"+user.get(0).getUserName(), user.get(0).getUserName());
}
} }
}
demo2
@RunWith(SpringRunner.class)
@SpringBootTest
public class BloomFilterTest {
private BloomFilter<Integer> bloomFilter; private int size = 1000000;
@Before
public void init(){
//不设置第三个参数时,误判率默认为0.03
//bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size);
//进行误判率的设置,自动计算需要几个hash函数。bit数组的长度与size和fpp参数有关
//过滤器内部会对size进行处理,保证size为2的n次幂。
bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, 0.01);
for(int i = 0; i < size; i++){
bloomFilter.put(i);
}
}
@Test
public void testBloomFilter(){
for(int i = 0; i < size; i++){
if(!bloomFilter.mightContain(i)){
//不会打印,因为不存在的情况不会出现误判
System.out.println("不存在的误判" + i);
}
} List<Integer> list = new ArrayList<>(1000);
for (int i = size + 10000; i < size + 20000; i++) {
if (bloomFilter.mightContain(i)) {
list.add(i);
}
}
//根据设置的误判率
System.out.println("存在的误判数量:" + list.size());
}
}
布隆过滤器有以下应用场景:
1、黑名单,比如邮件黑名单过滤器,判端邮件地址是否在黑名单中。
2、网络爬虫,判端url是否已经被爬取过。
3、首次访问,判端访问网站的IP是否是第一次访问。
4、缓存击穿,防止非法攻击,频繁发送无法命中缓存的请求,导致缓存击穿,最总引起缓存雪崩。
5、检查英文单词是否拼写正确。
6、K-V系统快速判断某个key是否存在,典型的例子有Hbase,Hbase的每个Region中都包含一个BloomFilter,用于在查询时快速判断某个key在该region中是否存在,如果不存在,直接返回,节省掉后续的查询。
扩展,如何让布隆过滤器支持删除。
进行计数删除,但是计数删除需要存储一个数值,而不是原先的 bit 位,会增大占用的内存大小。这样的话,增加一个值就是将对应索引槽上存储的值加一,删除则是减一,判断是否存在则是看值是否大于0。
布隆过滤器的demo的更多相关文章
- 浅析布隆过滤器及实现demo
布隆过滤器 布隆过滤器(Bloom Filter)是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例. ...
- 【布隆过滤器】基于Hutool库实现的布隆过滤器Demo
布隆过滤器出现的背景: 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储 ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)
原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...
- python实现布隆过滤器及原理解析
python实现布隆过滤器及原理解析 布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地 ...
- 细谈布隆过滤器及Redis实现
何为布隆过滤器? 本质上是一种数据结构,是1970年由布隆提出的.它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数).可以用于检索一个元素是否在一个集合中. 数据结构: 布隆过 ...
- 布隆过滤器的概述及Python实现
布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概 ...
- 【转】Bloom Filter布隆过滤器的概念和原理
转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的 ...
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
随机推荐
- nyoj 95-众数问题 (map)
95-众数问题 内存限制:64MB 时间限制:3000ms 特判: No 通过数:16 提交数:29 难度:3 题目描述: 所谓众数,就是对于给定的含有N个元素的多重集合,每个元素在S中出现次数最多的 ...
- nyoj 513-A+B Problem IV (java BigDecimal, stripTrailingZeros, toPlainString)
513-A+B Problem IV 内存限制:64MB 时间限制:1000ms 特判: No 通过数:1 提交数:2 难度:3 题目描述: acmj最近发现在使用计算器计算高精度的大数加法时很不方便 ...
- 领扣(LeetCode)各位相加 个人题解
给定一个非负整数 num,反复将各个位上的数字相加,直到结果为一位数. 示例: 输入: 38 输出: 2 解释: 各位相加的过程为:3 + 8 = 11, 1 + 1 = 2. 由于 2 是一位数,所 ...
- sqlcipher的php扩展运行在fast-cgi:php-fpm下工作不正常
今天发现了这样的问题,php-fpm运行sqlcipher时,有些数据库工作正常,有些却不正常. 不正常的,都在日志上报错,也就是php处理异常了. 这个报错发生在执行sql语句时,通常就是sqlci ...
- 访问formData的数据
vant-ui 的 Uploader 上传图片时,用到formData let fd = new FormData(); fd.append('upImgs', file.file); postIma ...
- ArcGIS 问题汇总
1.Arcgis10.4出现Manager打不开的情况 解决方法: 1.检查进程中是否有占用4000以及6080端口的进程,如果有关闭 2.检查进程中是否有javaw.exe这个进程,如果有就把他结束 ...
- Centos下安装PHP ldap扩展
Centos下安装PHP ldap扩展,有两种方法,仅供参考. 一.在线安装 执行下面命令: 1 yum install PHP-ldap 可能出现的问题: Error: php70w-common- ...
- 扛把子组20191107-4 beta week 2/2 Scrum立会报告+燃尽图 03
此作业的要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/9956 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 韩 ...
- 作业要求20191010-8 alpha week 1/2 Scrum立会报告+燃尽图 06
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/8751 一.小组情况 队名:扛把子 组长:迟俊文 组员:宋晓丽 梁梦瑶 韩 ...
- 全栈项目|小书架|微信小程序-登录及token鉴权
小程序登录 之前也写过微信小程序登录的相关文章: 微信小程序~新版授权用户登录例子 微信小程序-携带Token无感知登录的网络请求方案 微信小程序开通云开发并利用云函数获取Openid 也可以通过官方 ...