运用暴力解方程吸氧过了这道题

通过数据范围看,要是枚举x和y只能炸掉三成的数据。

所以考虑枚举从x1到x2枚举x,通过方程移项可知y=-(ax+c)/b,再判断y是否在y1和y2之间即可。

本题本做法主要坑点:

1、a=b=0时要特判(分为c=0和c!=0两种情况)

2、y1和y2是cmath库关键字

3、注意精度问题

#pragma GCC optimize(1)
#include<bits/stdc++.h>
#define ll long long
using namespace std; signed main(void)
{
ll a,b,c,ans=;
ll x1,x2,y_1,y_2; //y1和y2是cmath关键字,定义这两个家伙会CE
scanf("%lld%lld%lld",&a,&b,&c);
scanf("%lld%lld%lld%lld",&x1,&x2,&y_1,&y_2); if(a==&&b==) //当a=b=0
{
if(c!=) //如果c不为0,等式根本不成立
{
puts("");
return ;
} else if(c==) //如果c=0,任何一个x与y的配对都成立
{
ll x_1=abs(x2-x1)+,
x_2=abs(y_2-y_1)+,
xx=x_1*x_2;
printf("%lld\n",xx);
return ;
}
} for(ll x=x1;x<=x2;x++) //常规情况:ax+by+c=0=>-(ax+c)/b=y
{
ll axc=(a*x+c)*-;
double _ax_c=axc,
y=_ax_c/b; //计算y值
if(y>=y_1&&y<=y_2&&(a*x+b*(ll)y+c)==) ans++; //判断y是否在范围内
//此处存在精度问题,要用y的整数范围验算判断
} printf("%lld\n",ans);
return ;
}

题解 洛谷P2833 【等式】的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

随机推荐

  1. struts与springmvc有何区别

    Struts2与SpringMVC有何区别? (1)SpringMVC的核心控制器是基于servlet技术,而Struts2是基于filter. (2)Struts2是类级别的拦截, 一个类对应一个r ...

  2. CodeForces 939F Cutlet

    洛谷题目页面传送门 & CodeForces题目页面传送门 题意见洛谷里的翻译. 这是一道毒瘤的div. 2 F,我是不可能比赛的时候做出来的... (以下设两面都要煎\(n\)分钟,有\(m ...

  3. Mybatis案例超详解(上)

    Mybatis案例超详解(上) 前言: 本来是想像之前一样继续跟新Mybatis,但由于种种原因,迟迟没有更新,快开学了,学了一个暑假,博客也更新了不少,我觉得我得缓缓,先整合一些案例练练,等我再成熟 ...

  4. 面试java后端面经_3

    小姐姐说:你一点都不懂表达,一点都不懂爱情,一点也不爱我! 你答:你知道吗,我听说过一个这样的故事,讲的就是有一个小女孩和一个男孩在一起,小男孩呢很不幸是位聋哑人,虽然如此,但是他们的日子过得特别的美 ...

  5. web项目jsp中无法引入js问题

    https://blog.csdn.net/C1042135353/article/details/80274685#commentBox 这篇文章超赞的,几个小时的时间看了这篇文章豁然开朗,瞬间懂了 ...

  6. Android开发实践小结

    作为一名搬运工,应该懂得避免重复创建轮子. 配置keystore密码信息 通常在app/build.gradle中我们会使用以下方式配置: signingConfigs { release { sto ...

  7. Jupter NotebooK学习

    1.参考资料 B站上学习视频 Jupyter 安装与使用 2.安装 在cmd窗口中输入(创建的文件会再当前的目录下):pip install jupyter 然后输入:jupyter notebook ...

  8. Java 学习笔记---Java double类型相加问题

    多个double类型的数直接相加的时候,可能存在精度误差.( 由于计算机算法以及硬件环境决定只能识别 0 1.计算机默认的计算结果在都在一个指定精度范围之内,想往深的了解,可以学习数值分析等) 在金融 ...

  9. Django2.0使用

    创建项目: 通过命令行的方式:首先要进入到安装了django的虚拟环境中.然后执行命令: django-admin startproject [项目的名称] 这样就可以在当前目录下创建一个项目了. 通 ...

  10. [Python] 用python做一个游戏辅助脚本,完整思路

    一.说明 简述:本文将以4399小游戏<宠物连连看经典版2>作为测试案例,通过识别小图标,模拟鼠标点击,快速完成配对.对于有兴趣学习游戏脚本的同学有一定的帮助. 运行环境:Win10/Py ...