Scrapy 框架入门简介
一、Scrapy框架简介
Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架。
Scrapy 常应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
通常我们可以很简单的通过 Scrapy 框架实现一个爬虫,抓取指定网站的内容或图片。
二、Scrapy架构图(绿线是数据流向)
Scrapy Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。
Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎(主要功能url去重,构建url队列)。
Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,
Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器).
Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方。
Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。
Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)
三、Scrapy的运作流程
代码写好,程序开始运行...
1 引擎:Hi!Spider, 你要处理哪一个网站? 2 Spider:老大要我处理xxxx.com。 3 引擎:你把第一个需要处理的URL给我吧。 4 Spider:给你,第一个URL是xxxxxxx.com。 5 引擎:Hi!调度器,我这有request请求你帮我排序入队一下。 6 调度器:好的,正在处理你等一下。 7 引擎:Hi!调度器,把你处理好的request请求给我。 8 调度器:给你,这是我处理好的request 9 引擎:Hi!下载器,你按照老大的下载中间件的设置帮我下载一下这个request请求 10 下载器:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载) 11 引擎:Hi!Spider,这是下载好的东西,并且已经按照老大的下载中间件处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()这个函数处理的) 12 Spider:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。 13 引擎:Hi !管道 我这儿有个item你帮我处理一下!调度器!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。 14 管道``调度器:好的,现在就做!
注意!只有当调度器中不存在任何request了,整个程序才会停止,(也就是说,对于下载失败的URL,Scrapy也会重新下载。)
四、制作 Scrapy 爬虫 一共需要5步:
#新建项目 :新建一个新的爬虫项目
scrapy startproject proName #创建爬虫文件
scrapy genspider spiName "www.xxx.com" #明确目标 (编写items.py):明确你想要抓取的目标 #编写爬虫文件:制作爬虫开始爬取网页 #存储内容 (pipelines.py):设计管道存储爬取内容
五、Scrapy的安装
Windows 安装方式
a. pip3 install wheel
b. pip3 install Twisted-17.0.1-cp35-cp35m-win_amd64.whl
c. pip3 install pywin32
d. pip3 install scrapy
六、入门案例
(一)在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:
scrapy startproject mySpider
其中, mySpider 为项目名称,可以看到将会创建一个 mySpider 文件夹,目录结构大致如下:
下面来简单介绍一下各个主要文件的作用:
mySpider/
scrapy.cfg
mySpider/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
...
这些文件分别是:
- scrapy.cfg: 项目的配置文件。
- mySpider/: 项目的Python模块,将会从这里引用代码。
- mySpider/items.py: 项目的目标文件。
- mySpider/pipelines.py: 项目的管道文件。
- mySpider/settings.py: 项目的设置文件。
- mySpider/spiders/: 存储爬虫代码目录。
(二)明确目标
我们打算抓取 http://www.itcast.cn/channel/teacher.shtml 网站里的所有讲师的姓名、职称和个人信息。
打开 mySpider 目录下的 items.py。
Item 定义结构化数据字段,用来保存爬取到的数据,有点像 Python 中的 dict,但是提供了一些额外的保护减少错误。
可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个 Item(可以理解成类似于 ORM 的映射关系)。
接下来,创建一个 ItcastItem 类,和构建 item 模型(model)。
import scrapy class ItcastItem(scrapy.Item):
name = scrapy.Field()
title = scrapy.Field()
info = scrapy.Field()
(三)制作爬虫文件
1. 爬数据
在当前目录下输入命令,将在mySpider/spider目录下创建一个名为itcast的爬虫,并指定爬取域的范围:
scrapy genspider itcast "itcast.cn"
打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:
import scrapy class ItcastSpider(scrapy.Spider):
name = "itcast"
allowed_domains = ["itcast.cn"]
start_urls = (
'http://www.itcast.cn/',
) def parse(self, response):
pass
其实也可以由我们自行创建itcast.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦
要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。
name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。
allow_domains = [ ] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。
start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。
parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:
负责解析返回的网页数据(response.body),提取结构化数据(生成item)
生成需要下一页的URL请求。
将start_urls的值修改为需要爬取的第一个url
start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)
2、取数据,修改parse()方法
from mySpider.items import ItcastItem def parse(self, response):
#open("teacher.html","wb").write(response.body).close() # 存放老师信息的集合
items = [] for each in response.xpath("//div[@class='li_txt']"):
# 将我们得到的数据封装到一个 `ItcastItem` 对象
item = ItcastItem()
#extract()方法返回的都是unicode字符串
name = each.xpath("h3/text()").extract()
title = each.xpath("h4/text()").extract()
info = each.xpath("p/text()").extract() #xpath返回的是包含一个元素的列表
item['name'] = name[0]
item['title'] = title[0]
item['info'] = info[0] items.append(item) # 直接返回最后数据
return items
我们暂时先不处理管道,此时保存数据可以在终端输入命令,指定-o参数
scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,命令如下:
scrapy crawl itcast -o teachers.json #json格式,默认为Unicode编码 scrapy crawl itcast -o teachers.jsonlines #json lines格式,默认为Unicode编码 scrapy crawl itcast -o teachers.csv #csv 逗号表达式,可用Excel打开 scrapy crawl itcast -o teachers.xml #xml格式
如果将return改成yield,如下所示,yield会将item数据通过引擎提交给管道进行数据的存储
from mySpider.items import ItcastItem def parse(self, response):
#open("teacher.html","wb").write(response.body).close() # 存放老师信息的集合
#items = [] for each in response.xpath("//div[@class='li_txt']"):
# 将我们得到的数据封装到一个 `ItcastItem` 对象
item = ItcastItem()
#extract()方法返回的都是unicode字符串
name = each.xpath("h3/text()").extract()
title = each.xpath("h4/text()").extract()
info = each.xpath("p/text()").extract() #xpath返回的是包含一个元素的列表
item['name'] = name[0]
item['title'] = title[0]
item['info'] = info[0] #items.append(item) #将获取的数据交给pipelines
yield item
此时pipelines.py文件编写如下:
import pymysql
import redis
class MyspiderPipeline(object):
fp = None
def open_spider(self,spider): #此方法只执行一次,在爬虫文件开始被执行时触发此方法
print("开始爬虫...")
self.fp = open('./info.txt','w',encoding='utf-8')
def process_item(self, item, spider):
print("打印item",item)
self.fp.write(item["name"]+':'+item["title"]+':'+item["info"]+'\n')
return item #return的作用是将item交由下一个管道进行相应方式的存储
def close_spider(self,spider): #此方法只执行一次,在爬虫文件执行结束时触发此方法
print('结束爬虫...')
self.fp.close() #将爬虫数据存储在mtsql数据库中
class MysqlPipeline(object):
conn = None
cursor = None
def open_spider(self,spider):
self.conn = pymysql.Connect(host="127.0.0.1",port=3306,user="root",password="",db="scrapy",charset="utf8")
def process_item(self,item,spider):
self.cursor = self.conn.cursor()
try:
sql = "insert into teachers(name,title,info) values (%s,%s,%s)"
self.cursor.execute(sql,[item["name"],item["title"],item["info"]])
self.conn.commit()
return item
except Exception as e:
self.conn.rollback()
def close_spider(self,spider):
self.conn.close()
self.cursor.close() # 将爬虫文件缓存在redis数据库中
class RedisPipeline(object):
conn = None
def open_spider(self, spider):
pool = redis.ConnectionPool(host='127.0.0.1',port=6379,db=5)
self.conn = redis.Redis(connection_pool=pool)
def process_item(self,item,spider):
self.conn.lpush('teachersInfo',item)
return item
pipelines.py
利用管道进行存储时,注意不要忘了对settings.py文件进行相应的配置
ITEM_PIPELINES = {
'mySpider.pipelines.MyspiderPipeline': 300, #数字越小,优先级越高
'mySpider.pipelines.MysqlPipeline': 301,
'mySpider.pipelines.RedisPipeline': 302,
}
settings.py
Scrapy 框架入门简介的更多相关文章
- 爬虫入门(四)——Scrapy框架入门:使用Scrapy框架爬取全书网小说数据
为了入门scrapy框架,昨天写了一个爬取静态小说网站的小程序 下面我们尝试爬取全书网中网游动漫类小说的书籍信息. 一.准备阶段 明确一下爬虫页面分析的思路: 对于书籍列表页:我们需要知道打开单本书籍 ...
- Python爬虫Scrapy框架入门(2)
本文是跟着大神博客,尝试从网站上爬一堆东西,一堆你懂得的东西 附上原创链接: http://www.cnblogs.com/qiyeboy/p/5428240.html 基本思路是,查看网页元素,填写 ...
- Python爬虫Scrapy框架入门(1)
也许是很少接触python的原因,我觉得是Scrapy框架和以往Java框架很不一样:它真的是个框架. 从表层来看,与Java框架引入jar包.配置xml或.property文件不同,Scrapy的模 ...
- Python爬虫Scrapy框架入门(0)
想学习爬虫,又想了解python语言,有个python高手推荐我看看scrapy. scrapy是一个python爬虫框架,据说很灵活,网上介绍该框架的信息很多,此处不再赘述.专心记录我自己遇到的问题 ...
- Scrapy 框架 入门教程
Scrapy入门教程 在本篇教程中,我已经安装好Scrapy 本篇教程中将带您完成下列任务: 创建一个Scrapy项目 定义提取的Item 编写爬取网站的 spider 并提取 Item 编写 Ite ...
- scrapy框架入门
scrapy迄今为止依然是世界上最好用,最稳定的爬虫框架,相比于其他直接由函数定义的程序, scrapy使用了面向对象并对网页请求的过程分成了很多个模块和阶段,实现跨模块和包的使用,大大提升了代码的稳 ...
- Python爬虫Scrapy框架入门(3)
往往需要爬取的网页是呈一个树状结构.比如,需要先爬取一个目录,然后再在目录中选择具体的爬取目标.而目录和具体目标之间,网页结构不同,使得我们不能使用相同的爬取策略. 从之前的经验来看,我们对scrap ...
- scrapy 框架入门
运行流程 官网:https://docs.scrapy.org/en/latest/intro/overview.html 流程图如下: 组件 1.引擎(EGINE):负责控制系统所有组件之间的数据流 ...
- 【python】Scrapy爬虫框架入门
说明: 本文主要学习Scrapy框架入门,介绍如何使用Scrapy框架爬取页面信息. 项目案例:爬取腾讯招聘页面 https://hr.tencent.com/position.php?&st ...
随机推荐
- Cisco交换机、路由器,密码恢复
一.路由器密码恢复 1.重启路由器,同时按下ctrl + breack键中断IOS的加载,路由器进入ROM Monitor模式 2.将配置寄存器的值更改为 0x2142,表示在启动时忽略startup ...
- OpenGl 实现鼠标分别移动多个物体 ----------移动一个物体另外一个物体不动--读取多个3d模型操作的前期踏脚石
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/11620088.html 前言: 因为接下来的项目需求是要读取多个3D模型,并且移动拼接,那么我 ...
- Pots POJ 3414
/* *POJ 3414 *简单模板bfs *编程应该为了方便理解,尽量提供接口 */ #include<cstdio> #include<algorithm> #includ ...
- VisualStudio自定义调试工具(GIS)
闲言 偶尔分享技术,对,这次就是偶尔,几年一次(技术自卑).上周末竟然有人催更,也是受宠...若惊.以后会主动定期更的,可能. 前言 Visual Studio 调试器自带很多调试工具,调 ...
- JavaScript系列:函数式编程(开篇)
前言: 上一篇介绍了 函数回调,高阶函数以及函数柯里化等高级函数应用,同时,因为正在学习JavaScript·函数式编程,想整理一下函数式编程中,对于我们日常比较有用的部分. 为什么函数式编程很重要? ...
- redis 漏洞造成服务器被入侵-CPU飙升
前言 前几天在自己服务器上搭了redis,准备想着大展身手一番,昨天使用redis-cli命令的时候,10s后,显示进程已杀死.然后又试了几次,都是一样的结果,10s时间,进程被杀死.这个时候我还 ...
- 编程小技巧之 Linux 文本处理命令
合格的程序员都善于使用工具,正所谓君子性非异也,善假于物也.合理的利用 Linux 的命令行工具,可以提高我们的工作效率. 本文简单的介绍三个能使用 Linux 文本处理命令的场景,给大家开阔一下思路 ...
- 软件开发工具(第9章:使用Eclipse进行C/C++开发)
一.安装MinGW MinGW是指用来生成可执行文件的编译环境,它是开发C/C++项目 的工具集.为了能够使用Eclipse CDT编译且运行C和C++程序,必须 要安装一个C/C++编译器. 下载: ...
- BT面板安装php报错configure: error: C preprocessor “/lib/cpp” fails sanity check
使用宝塔面板安装扩展时已经显示添加安装成功了,待我刷新浏览器之后没有安装成功.看了一下执行日志. 缺少必要的C++库,如下命令重装解决. yum reinstall glibc-headers gcc ...
- Java容器总结
容器总结 Java容器工具包框架图 List,Set,Map三者的区别 List(对付顺序的好帮手): List接口存储一组不唯一(可以有多个元素引用相同的对象),有序的对象 Set(注重独一无二的性 ...