02(c)多元无约束优化问题-牛顿法
此部分内容接《02(a)多元无约束优化问题》!
第二类:牛顿法(Newton method)
\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ }\approx \text{ }f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }+\frac{1}{2}{{\mathbf{\delta }}^{T}}\cdot {{\nabla }^{2}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\]
在${{\mathbf{x}}_{k}}$定了的情况下,$f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ }$可以看成是$\mathbf{\delta }$的函数,要使函数达到极小值点,即找出使得函数$f({{\mathbf{x}}_{k}}+\mathbf{\delta })$对$\mathbf{\delta }$的一阶导数等于0,则有:
\[\begin{aligned}& f({{\mathbf{x}}_{k}}+\mathbf{\delta }{)}'\text{ }=\nabla f({{\mathbf{x}}_{k}})+{{\nabla }^{2}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta } \\& \text{ =}\nabla f({{\mathbf{x}}_{k}})+H({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }=0 \\\end{aligned}\]
则下降方向可写为:$\mathbf{\delta }=-{{H}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}})$。
(听课的时候就一直在想,一阶导数等于零的点就是极小值点吗???$y=a{{x}^{2}}+bx+c$一种简单的一元二次函数的一阶导数等于0的点,是不是极小值点,还的看$a$的正负呢!)
图 1
从上图中可以看出,在点${{\mathbf{x}}_{k}}$处使函数下降最快的方向是$-\nabla f({{\mathbf{x}}_{k}})$方向,但它却不是使$f({{\mathbf{x}}_{k}})$最快接近最小值的方向(最快接近最小值方向应该是上图中红色虚线的方向);由此见牛顿法的下降方向:$\mathbf{\delta }=-{{H}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}})$,就是在$-\nabla f({{\mathbf{x}}_{k}})$乘上了一个该点Hessian阵的逆${{H}^{-1}}({{\mathbf{x}}_{k}})$;我们希望的是在乘上${{H}^{-1}}({{\mathbf{x}}_{k}})$后使得下降方向朝向上图中红色虚线的方向;But,在有些情况下乘上${{H}^{-1}}({{\mathbf{x}}_{k}})$后,不但没有使函数值$f({{\mathbf{x}}_{k}})$下降,反而让函数值$f({{\mathbf{x}}_{k}})$变大了。只有当${{H}^{-1}}({{\mathbf{x}}_{k}})$在满足下面的条件下,才能使函数值不断减小:
\[\begin{aligned}& {{\left( -\nabla f({{\mathbf{x}}_{k}}) \right)}^{T}}\cdot \left( -{{H}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}}) \right)=\left\| -\nabla f({{\mathbf{x}}_{k}}) \right\|\cdot \left\| -{{H}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}}) \right\|\cos(\theta ) \\& \text{ =}{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot {{H}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}})>0 \\\end{aligned}\]
即要使从新获得的下降方向$-{{H}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}})$与最速下降方向$-\nabla f({{\mathbf{x}}_{k}})$之间的夹角$-{\pi }/{2}\;<\theta <{\pi }/{2}\;$。要满足:
\[{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot {{H}^{-1}}({{\mathbf{x}}_{k}})\nabla f({{\mathbf{x}}_{k}})>0\]
${{H}^{-1}}({{\mathbf{x}}_{k}})$要达到什么样的条件呢,由正定二次型的性质可知,当${{H}^{-1}}({{\mathbf{x}}_{k}})$为正定阵(等价于${{H}^{-1}}({{\mathbf{x}}_{k}})\succ 0$的全部特征值大于0)时,式(12)恒成立;当${{H}^{-1}}({{\mathbf{x}}_{k}})$不是正定阵的情况下仍然希望使用牛顿法,则需要对最速下降方向$-\nabla f({{\mathbf{x}}_{k}})$前面乘的Hessian阵的逆${{H}^{-1}}({{\mathbf{x}}_{k}})$进行改进;由于${{H}^{-1}}({{\mathbf{x}}_{k}})$为一个实对称阵,所以一定能正交分解,这里取${{\lambda }_{1}},{{\lambda }_{2}},...,{{\lambda }_{n}}$从大到小排:
\[{{H}^{-1}}({{\mathbf{x}}_{k}})=U\left[ \begin{matrix}{{\lambda }_{1}} & {} & {} & {} \\{} & {{\lambda }_{2}} & {} & {} \\{} & {} & \ddots & {} \\{} & {} & {} & {{\lambda }_{n}} \\\end{matrix} \right]{{U}^{T}}\]
具体步骤:
s1:找出${{H}^{-1}}({{\mathbf{x}}_{k}})$的最小特征值:Matlab代码可写为$\min (eig({{H}^{-1}}({{\mathbf{x}}_{k}})))=-9.8$;
s2:组合得到一个新的${{\hat{H}}^{-1}}({{\mathbf{x}}_{k}})={{H}^{-1}}({{\mathbf{x}}_{k}})+9.9E$;
\[\begin{aligned}& {{{\hat{H}}}^{-1}}({{\mathbf{x}}_{k}})=U\left[ \begin{matrix}{{\lambda }_{1}} & {} & {} & {} \\{} & {{\lambda }_{2}} & {} & {} \\{} & {} & \ddots & {} \\{} & {} & {} & -9.8 \\\end{matrix} \right]{{U}^{T}}+9.9UE{{U}^{T}} \\& \text{ }=U\left[ \begin{matrix}{{\lambda }_{1}}+9.9 & {} & {} & {} \\{} & {{\lambda }_{2}}+9.9 & {} & {} \\{} & {} & \ddots & {} \\{} & {} & {} & 0.1 \\\end{matrix} \right]{{U}^{T}}\succ 0 \\\end{aligned}\]
这里由于$U$为正交阵,故由$U{{U}^{T}}=E$,这样牛顿法的下降方向可写为:
\[\mathbf{\delta }=-{{\hat{H}}^{-1}}({{\mathbf{x}}_{k}})\cdot \nabla f({{\mathbf{x}}_{k}})\]
Step3:通过Step2确定下降方向${{\mathbf{d}}_{k}}$之后,$f({{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}})$可以看成${{\alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{\alpha }_{k}}>0$,${{\mathbf{x}}_{k+1}}={{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}}$;
Step4: if走一步的距离$\left\| {{\alpha }_{k}}{{\mathbf{d}}_{k}} \right\|<\varepsilon $,则停止并且输出解${{\mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。
02(c)多元无约束优化问题-牛顿法的更多相关文章
- 02(d)多元无约束优化问题-拟牛顿法
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...
- 02(b)多元无约束优化问题-最速下降法
此部分内容接02(a)多元无约束优化问题的内容! 第一类:最速下降法(Steepest descent method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta }) ...
- 02(a)多元无约束优化问题
2.1 基本优化问题 $\operatorname{minimize}\text{ }f(x)\text{ for }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...
- 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题
2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...
- 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...
- 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...
- MATLAB进行无约束优化
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...
- 01(b)无约束优化(准备知识)
1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{ ...
- 065 01 Android 零基础入门 01 Java基础语法 08 Java方法 02 带参无返回值方法
065 01 Android 零基础入门 01 Java基础语法 08 Java方法 03 带参无返回值方法 本文知识点:带参无返回值方法 说明:因为时间紧张,本人写博客过程中只是对知识点的关键步骤进 ...
随机推荐
- mysql数据库编码、字段编码、表编码 专题
CREATE DATABASE `mybatis-subject` /*!40100 DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_bin */ 其中的 ...
- liunx 系统 一键安装
本文转自:http://hi.baidu.com/iamcyh/item/e777eb81ba90ed5a26ebd9b0 linux VPS环境(MySQL/Apache/PHP/Nginx)一键安 ...
- G1 安装 Linux Debian system
开发Android第五步,G1 安装 Linux Debian system 在 G1 上安装 Linux Debian system (Debian ARMEL) 要具备以下条件: (a) 最好是 ...
- dotnetspider
http://www.cnblogs.com/modestmt/p/5525467.html nuget :DotnetSpider2.Core
- js中的scrollTop、offsetTop、clientTop
scrollHeight:获取对象可滚动的高度. scrollWidth:获取对象可滚动的宽度. scrollTop:获取对象最顶端与对象可见区域最顶端的距离. scrollLeft:获取对象左边界与 ...
- LINQ查询表达式---------join子句
LINQ查询表达式---------join子句 join 子句接受两个源序列作为输入. 每个序列中的元素都必须是可以与另一个序列中的相应属性进行比较的属性,或者包含一个这样的属性. join子句使用 ...
- storm和kafka的wordCount
这个是在window环境下面安装的kafka 下载pom依赖 <dependency> <groupId>org.apache.storm</groupId> &l ...
- 简析TCP的三次握手与四次分手(TCP协议头部的格式,数据从应用层发下来,会在每一层都会加上头部信息,进行封装,然后再发送到数据接收端)good
2014-10-30 分类:理论基础 / 网络开发 阅读(4127) 评论(29) TCP是什么? 具体的关于TCP是什么,我不打算详细的说了:当你看到这篇文章时,我想你也知道TCP的概念了,想要更 ...
- sklearn中LinearRegression使用及源码解读
sklearn中的LinearRegression 函数原型:class sklearn.linear_model.LinearRegression(fit_intercept=True,normal ...
- virtualbox 安装 extension pack 方法以及出现 "The installer failed with exit code 1: VBoxExtPackHelperApp.exe: error: Failed to rename the temporary directory to the final one"的解决办法
virtualbox 的版本:5.1.26 下载地址:https://www.virtualbox.org/wiki/Downloads extension pack 的版本:5.1.26 ...