一、介绍

  Powell算法是图像配准里面的常用的加速算法,可以加快搜索速度,而且对于低维函数的效果很好,所以本篇博客主要是为了介绍Powell算法的原理以及实现。

  由于网上已经有了对于Powell算法的讲解,所以我只是把链接放出来(我觉得自己目前还没有这个讲解的能力),大家自己去了解。

  放在这里主要也是为了节省大家搜索的时间。(都是我辛辛苦苦搜出来的^-^)。

二、预备知识

  了解一维搜索算法:进退法,消去法,黄金分割法

  阅读以下博客:https://blog.csdn.net/shenziheng1/article/details/51088650

三、鲍威尔算法

  具体原理阅读这里:

  参考博客:https://blog.csdn.net/shenziheng1/article/details/51028074

  原理与例子(一个例子的计算过程):https://www.docin.com/p-956696217.html

四、matlab代码实现一个简单函数的求解

  代码来源:http://blog.sina.com.cn/s/blog_743c53600100vhdn.html

  这个代码的程序与思路很是简洁,我觉得写得很好。

  原文代码放在这里:

  文件:MyPowell.m 

function MyPowell()
syms x1 x2 x3 a;
f=*(x1+x2-)^+(x1-x2+x3)^ +(x2+x3)^;
error=^(-);
D=eye();
x0=[ ]';
for k=::^
MaxLength=;x00=x0;m=;
if k==,s=D;end
for i=:
x=x0+a*s(:,i);
ff=subs(f,{x1,x2,x3},{x(),x(),x()});
t=Divide(ff,a); %调用了进退法分割区间
aa=OneDemensionslSearch(ff,a,t); %调用了0.618法进行一维搜索
xx=x0+aa*s(:,i);
fx0=subs(f,{x1,x2,x3},{x0(),x0(),x0()});
fxx=subs(f,{x1,x2,x3},{xx(),xx(),xx()});
length=fx0-fxx;
if length>MaxLength,MaxLength=length;m=m+;end
x0=xx;
end
ss=x0-x00;
ReflectX=*x0-x00;
f1=subs(f,{x1,x2,x3},{x00(),x00(),x00()});
f2=subs(f,{x1,x2,x3},{x0(),x0(),x0()});
f3=subs(f,{x1,x2,x3},{ReflectX(),ReflectX(),ReflectX()});
if f3<f1&&(f1+f3-*f2)*(f1-f2-MaxLength)^<0.5*MaxLength*(f1-f3)^
x=x0+a*ss;
ff=subs(f,{x1,x2,x3},{x(),x(),x()});
t=Divide(ff,a);
aa=OneDemensionslSearch(ff,a,t);
x0=x0+aa*ss;
for j=m:(-),s(:,j)=s(:,j+);end
s(:,)=ss;
else
if f2>f3, x0=ReflectX;end
end
if norm(x00-x0)<error,break;end
k;
x0;
end
opx=x0;
val=subs(f,{x1,x2,x3},{opx(),opx(),opx()});
disp('最优点:');opx'
disp('最优化值:');val
disp('迭代次数:');k

  文件  Divide.m  :

% 进退法
%对任意一个一维函数函数进行区间分割,使其出现“高—低—高”的型式 function output=Divide(f,x,m,n) if nargin<,n=1e-;end if nargin<,m=;end step=n; t0=m;ft0=subs(f,{x},{t0}); t1=t0+step;ft1=subs(f,{x},{t1}); if ft0>=ft1 t2=t1+step;ft2=subs(f,{x},{t2}); while ft1>ft2 t0=t1; %ft0=ft1; t1=t2;ft1=ft2; step=*step;t2=t1+step;ft2=subs(f,{x},{t2}); end else step=-step; t=t0;t0=t1;t1=t;ft=ft0; %ft0=ft1; ft1=ft; t2=t1+step;ft2=subs(f,{x},{t2}); while ft1>ft2 t0=t1; %ft0=ft1; t1=t2;ft1=ft2; step=*step;t2=t1+step;ft2=subs(f,{x},{t2}); end end
output=[t0,t2];

  文件:OneDemensionslSearch.m

% .618法
function output=OneDemensionslSearch(f,x,s,r) if nargin<,r=1e-;end a=s();b=s(); a1=a+0.382*(b-a);fa1=subs(f,{x},{a1}); a2=a+0.618*(b-a);fa2=subs(f,{x},{a2}); while abs((b-a)/b)>r && abs((fa2-fa1)/fa2)>r if fa1<fa2 b=a2;a2=a1;fa2=fa1;a1=a+0.382*(b-a);fa1=subs(f,{x},{a1}); else a=a1;a1=a2;fa1=fa2;a2=a+0.618*(b-a);fa2=subs(f,{x},{a2}); end end op=(a+b)/; %fop=subs(f,{x},{op}); output=op;

  全部放到同一个工程目录里面,设置为当前目录,然后输入Powell即可运行得到结果。

  这个代码的思路与鲍威尔算法的思路是完全符合的,而且很是简洁。

  

十一、Powell算法(鲍威尔算法)原理以及实现的更多相关文章

  1. C#常用8种排序算法实现以及原理简介

    public static class SortExtention { #region 冒泡排序 /* * 已知一组无序数据a[1].a[2].--a[n],需将其按升序排列.首先比较a[1]与a[2 ...

  2. 理解Liang-Barsky裁剪算法的算法原理

    0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方 ...

  3. 强化学习策略梯度方法之: REINFORCE 算法(从原理到代码实现)

    强化学习策略梯度方法之: REINFORCE 算法 (从原理到代码实现) 2018-04-01  15:15:42   最近在看policy gradient algorithm, 其中一种比较经典的 ...

  4. m_Orchestrate learning system---二十一、怎样写算法比较轻松

    m_Orchestrate learning system---二十一.怎样写算法比较轻松 一.总结 一句话总结:(1.写出算法步骤,这样非常有利于理清思路,这样就非常简单了 2.把问题分细,小问题用 ...

  5. 01--STL算法(算法基础)

    一:算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成. <algorithm>是所有STL头文件中 ...

  6. 经典算法 KMP算法详解

    内容: 1.问题引入 2.暴力求解方法 3.优化方法 4.KMP算法 1.问题引入 原始问题: 对于一个字符串 str (长度为N)和另一个字符串 match (长度为M),如果 match 是 st ...

  7. 【机器学习】k-近邻算法以及算法实例

    机器学习中常常要用到分类算法,在诸多的分类算法中有一种算法名为k-近邻算法,也称为kNN算法. 一.kNN算法的工作原理 二.适用情况 三.算法实例及讲解 ---1.收集数据 ---2.准备数据 -- ...

  8. 值得花费一周研究的算法 -- KMP算法(indexOf)

    KMP算法是由三个科学家(kmp分别是他们名字的首字母)创造出来的一种字符串匹配算法. 所解决的问题: 求文本字符串text内寻找第一次出现字符串s的下标,若未出现返回-1. 例如 text : &q ...

  9. GMM算法k-means算法的比较

    1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测. ...

随机推荐

  1. Redis的优缺点小结

    Redis(Remote Dictionary Server 远程数据服务),一个 Key-value(键值对)存储系统,典型的 NoSQL 数据库服务器. 优点: 1.支持丰富的数据类型,如:Str ...

  2. Java垃圾回收机制你还不明白?一线大厂面试必问的!

    什么是自动垃圾回收? 自动垃圾回收是一种在堆内存中找出哪些对象在被使用,还有哪些对象没被使用,并且将后者删掉的机制. 所谓使用中的对象(已引用对象),指的是程序中有指针指向的对象:而未使用中的对象(未 ...

  3. C语言每日一练——第1题

    一.程序功能 程序的功能是:将大于整数m且紧靠m的k个素数存入数组xx.并把in.dat文件的内容输入到程序,并把输出结果输出道out.dat文件夹中例如:若输入17,5 则应该输入:19,23,29 ...

  4. vue-cli3抽离配置文件,动态修改打包后配置

    由于项目有外部部署需求,对不同的环境前端调用后台的地址不一样,且不能提前预知必须到部署现场后才能确定后端地址,故需要将调用后端相关的配置抽离到文件中,打包后部署人员在方便现场修改. 思路如下: 1.由 ...

  5. centos7 redis 6379端口telnet不通

    1.查看redis服务是否启动,如图所示,redis已经启动 2.查看是否监听正确的ip和端口 发现问题:端口号6379没错,但是ip是127.0.0.1,表示只能本地访问,问题就出在这. 3.修改r ...

  6. 百万级高并发mongodb集群性能数十倍提升优化实践

    背景 线上某集群峰值TPS超过100万/秒左右(主要为写流量,读流量很低),峰值tps几乎已经到达集群上限,同时平均时延也超过100ms,随着读写流量的进一步增加,时延抖动严重影响业务可用性.该集群采 ...

  7. 小白的springboot之路(十一)、构建后台RESTfull API

    0.前言 开发系统中,前后端分离,后端一般返回RESTfull  API,前端调用API构建UI,彼此分离.互相完全独立: 后台API中,我们一般返回结果码.提示信息.数据三部分内容,如图: 我们今天 ...

  8. JS---案例:筋斗云

    案例:筋斗云 鼠标进入,一朵云的样式跟随鼠标移动,鼠标点击后离开,云样式回到上次点击的位置 <!DOCTYPE html> <html lang="en"> ...

  9. 如何利用PS将照片背景替换为白色

    需求:将照片中的蓝底换成白底: 操作步骤: 1.打开图片,点击背景图层: 2.利用套索,选中除背景外的区域: 3.右键,反选: 4.填充为“白色”,确定,保存:

  10. 浅析椭圆曲线加密算法(ECC)

    本文首发于先知社区,原文链接:https://xz.aliyun.com/t/6295 数学基础 黎曼几何中的"平行线" 欧几里得<几何原本>中提出五条公设: 过相异两 ...