换根DP(二次扫描)
参考来自这里:
https://blog.csdn.net/qq_41286356/article/details/94554729
题目在这里
https://ac.nowcoder.com/acm/contest/375/C
这题真的好,算是排列组合+树形DP的结合 吧
这题换个问法就是 : 给树节点标号,使得所有节点的父节点都比子节点大,这样的编号方法有几种?
第一次扫描,计算一个根:
第二次扫描,推进算出所有根
妙啊!
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define maxn 100010
using namespace std;
typedef long long ll;
const ll mod = 998244353;
vector<int>G[maxn];
void insert(int be, int en) {
G[be].push_back(en);
} ll inv(ll a) {
ll n = mod - 2;
ll res = 1;
while (n) {
if (n & 1) {
res = (res*a) % mod;
}
n >>= 1;
a = (a*a) % mod;
}
return res;
} ll dp[maxn];
ll in[maxn];
ll C(int n, int m) {
ll ans = (in[n] * inv(in[m])) % mod;
ans = (ans * inv(in[n - m])) % mod;
return ans;
} ll son[maxn];
int n; int dfs(int x,int fa) {
dp[x] = son[x] = 1; for (int i = 0; i < G[x].size(); i++) {
int p = G[x][i];
if (p == fa) continue;
dfs(p, x);
son[x] += son[p];
}
ll cnt = 0;
for (int i = 0; i < G[x].size(); i++) {
int p = G[x][i];
if (p == fa) continue;
ll a = son[x] - 1 - cnt;
ll b = son[p];
dp[x] = (((dp[x] * C(a, b)) % mod)*dp[p]) % mod;
cnt += son[p];
}
return 0;
} int dfs1(int x, int fa) {
for(int i = 0; i < G[x].size(); i++) {
int p = G[x][i];
if (p == fa) continue;
ll tmp = ((dp[x] * inv(dp[p])) % mod)*inv(C(n - 1, son[p])) % mod;
dp[p] = (((dp[p] * C(n - 1, n - son[p])) % mod)*tmp )% mod;
dfs1(p, x);
}
return 0;
} int main() { int be, en;
in[0] = 1;
for (int i = 1; i <= 1e5+4; i++) {
in[i] = (in[i - 1] * i) % mod;
} scanf("%d", &n); for (int i = 1; i < n; i++) {
scanf("%d%d", &be, &en);
insert(be, en);
insert(en, be);
}
dfs(1, -1);
dfs1(1, -1);
ll ans = 0;
for (int i = 1; i <= n; i++) {
ans = (ans + dp[i]) % mod;
}
printf("%lld\n", ans);
return 0;
}
换根DP(二次扫描)的更多相关文章
- POJ 3585 Accumulation Degree【换根DP】
传送门:http://poj.org/problem?id=3585 题意:给定一张无根图,给定每条边的容量,随便取一点使得从这个点出发作为源点,发出的流量最大,并且输出这个最大的流量. 思路:最近开 ...
- [算法学习] 换根dp
换根dp 一般来说,我们做题的树都是默认 \(1\) 为根的.但是有些题目需要计算以每个节点为根时的内容. 朴素的暴力:以每个点 \(u\) 作为 \(root\) 暴力dfs下去,复杂度\(O(n^ ...
- 模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)
题面 题解 先解决第一个子问题吧,它才是难点 Subtask_1 我们可以先用一个简单的树形DP处理出每棵树内部的dis和,记为dp0[i], 然后再用一个换根的树形DP处理出每棵树内点 i 到树内每 ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 小奇的仓库:换根dp
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
随机推荐
- Arthas用法
简介 Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱. 当你遇到以下类似问题而束手无策时,Arthas可以帮助你解决: 这个类从哪个 jar 包加载的? 为什么会报各种类相关的 ...
- oracle函数 MAX([distinct|all]x)
[功能]统计数据表选中行x列的最大值. [参数]all表示对所有的值求最大值,distinct只对不同的值求最大值,默认为all 如果有参数distinct或all,需有空格与x(列)隔开. [参数] ...
- HDU-1257_最少拦截系统
最少拦截系统 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Desc ...
- ROS出现“Couldn't find executable named listener below //home/xxx/catkin_ws/src/mypack”问题
在执行节点时出现了如下图所示的错误: 错误原因是在路径下找不到可执行的节点文件.但事实是已经对工作空间进行了编译,并且在devel /lib/my_serial_node 中已经生成了可执行文件. 如 ...
- Python基础:07迭代器
迭代器是在版本 2.2 被加入Python 的,它为类序列对象提供了一个类序列的接口.Python 的迭代无缝地支持序列对象,而且它还允许迭代非序列类型,包括用户定义的对象.它的出现,对列表迭代.字典 ...
- JQuery---高级选择器
一.派生选择器 例如:$('#bavBar a') 二.孩子选择器 例如:$('body > p') 三.相邻兄弟选择器 例如:$('h2 + div') 四.属性选择器 1.$('img[a ...
- Element-ui学习笔记1
1.col,row布局注意事项 el-row el-col gutter就是css,span的时候宽度是按boder-box来计算. 将 type 属性赋值为 'flex',可以启用 flex 布局, ...
- 使用colab平台进行训练
https://www.zhongxiaoping.cn/2018/12/01/%E4%BD%BF%E7%94%A8colab%E5%B9%B3%E5%8F%B0%E8%BF%9B%E8%A1%8C% ...
- SuperSocket 扩展你的 Logger
SuperSocket 允许你自定义你的 Logger. 例如,你如果想要把你的业务操作日志保存到一个独立的地方,你仅需要在log4net配置文件中添加一个新的 logger 并为这个 logger ...
- 在 Jenkins Windows Agent 节点上执行 Shell 命令
Jenkins 在 Windows agent 上执行shell 命令,听起来很有意思,以下方法可以在 Jenkins 中执行一些简单的 shell 脚本,如果是复杂脚本就交给 Linux agent ...