PyTorch 学习笔记(四):权值初始化的十种方法
pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用。
介绍分两部分:
1. Xavier,kaiming系列;
2. 其他方法分布
Xavier初始化方法,论文在《Understanding the difficulty of training deep feedforward neural networks》
公式推导是从“方差一致性”出发,初始化的分布有均匀分布和正态分布两种。
1. Xavier均匀分布
torch.nn.init.xavier_uniform_(tensor, gain=1)
xavier初始化方法中服从均匀分布U(−a,a) ,分布的参数a = gain * sqrt(6/fan_in+fan_out),
这里有一个gain,增益的大小是依据激活函数类型来设定
eg:nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
PS:上述初始化方法,也称为Glorot initialization
2. Xavier正态分布
torch.nn.init.xavier_normal_(tensor, gain=1)
xavier初始化方法中服从正态分布,
mean=0,std = gain * sqrt(2/fan_in + fan_out)
kaiming初始化方法,论文在《 Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》,公式推导同样从“方差一致性”出法,kaiming是针对xavier初始化方法在relu这一类激活函数表现不佳而提出的改进,详细可以参看论文。
3. kaiming均匀分布
torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
此为均匀分布,U~(-bound, bound), bound = sqrt(6/(1+a^2)*fan_in)
其中,a为激活函数的负半轴的斜率,relu是0
mode- 可选为fan_in 或 fan_out, fan_in使正向传播时,方差一致; fan_out使反向传播时,方差一致
nonlinearity- 可选 relu 和 leaky_relu ,默认值为 。 leaky_relu
nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
4. kaiming正态分布
torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
此为0均值的正态分布,N~ (0,std),其中std = sqrt(2/(1+a^2)*fan_in)
其中,a为激活函数的负半轴的斜率,relu是0
mode- 可选为fan_in 或 fan_out, fan_in使正向传播时,方差一致;fan_out使反向传播时,方差一致
nonlinearity- 可选 relu 和 leaky_relu ,默认值为 。 leaky_relu
nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
2.其他
5. 均匀分布初始化
torch.nn.init.uniform_(tensor, a=0, b=1)
使值服从均匀分布U(a,b)
6. 正态分布初始化
torch.nn.init.normal_(tensor, mean=0, std=1)
使值服从正态分布N(mean, std),默认值为0,1
7. 常数初始化
torch.nn.init.constant_(tensor, val)
使值为常数val nn.init.constant_(w, 0.3)
8. 单位矩阵初始化
torch.nn.init.eye_(tensor)
将二维tensor初始化为单位矩阵(the identity matrix)
9. 正交初始化
torch.nn.init.orthogonal_(tensor, gain=1)
使得tensor是正交的,论文:Exact solutions to the nonlinear dynamics of learning in deep linear neural networks” - Saxe, A. et al. (2013)
10. 稀疏初始化
torch.nn.init.sparse_(tensor, sparsity, std=0.01)
从正态分布N~(0. std)中进行稀疏化,使每一个column有一部分为0
sparsity- 每一个column稀疏的比例,即为0的比例
nn.init.sparse_(w, sparsity=0.1)
11. 计算增益
torch.nn.init.calculate_gain(nonlinearity, param=None)
PyTorch 学习笔记(四):权值初始化的十种方法的更多相关文章
- pytorch(14)权值初始化
权值的方差过大导致梯度爆炸的原因 方差一致性原则分析Xavier方法与Kaiming初始化方法 饱和激活函数tanh,非饱和激活函数relu pytorch提供的十种初始化方法 梯度消失与爆炸 \[H ...
- 莫烦PyTorch学习笔记(四)——回归
下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...
- [PyTorch 学习笔记] 4.1 权值初始化
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/grad_vanish_explod.py 在搭建好网络 ...
- ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试
http://www.cnblogs.com/denny402/p/5852983.html ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试 刚开始学习tf时,我们从 ...
- 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记
机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...
- PyTorch学习系列(九)——参数_初始化
from:http://blog.csdn.net/VictoriaW/article/details/72872036 之前我学习了神经网络中权值初始化的方法 那么如何在pytorch里实现呢. P ...
- python3.4学习笔记(四) 3.x和2.x的区别,持续更新
python3.4学习笔记(四) 3.x和2.x的区别 在2.x中:print html,3.x中必须改成:print(html) import urllib2ImportError: No modu ...
- [PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 ...
- [PyTorch 学习笔记] 6.2 Normalization
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_and_initialize.py https: ...
随机推荐
- CentOS 7安装与配置JDK8
1.检查是否安装过JDK 2.下载安装包并上传服务器 3.安装JDK rpm -ivh jdk-8u131-linux-x64.rpm 4.查看是否安装正常 java -version 5.配置环境变 ...
- 老大让我看baidu他们的查公交是怎么做的,我就看了
突然发现,baidu的查公交,Json请求都很乱 朝阳公园西门3号门 人民大学 较快捷 http://map.baidu.com/?newmap=1&reqflag=pcmap&biz ...
- IE9没有内置鼠标手势,还要自己写
写了个IE插件,然后获取鼠标,信息, 模拟了鼠标手势,在虚拟机里面测试,完全好使,但是现在又不敢在Win7上用了. 愁死了... 为了实现一个鼠标手势. 写的那破玩意,竟然50多K.....太大了.. ...
- Leetcode8.String to Integer (atoi)字符串转整数(atoi)
实现 atoi,将字符串转为整数. 该函数首先根据需要丢弃任意多的空格字符,直到找到第一个非空格字符为止.如果第一个非空字符是正号或负号,选取该符号,并将其与后面尽可能多的连续的数字组合起来,这部分字 ...
- HTML input type=file文件选择表单的汇总(二)
1. 原生file input大小.按钮文字等UI自定义 元素input的原生样式,不是太好看: 有一种方法是这样的:让file类型的元素透明度0,覆盖在我们好看的按钮上.然后我们去点击好看的按钮,实 ...
- C#中抽象方法与虚方法的区别(转)
C#中抽象方法与虚方法的区别 一.抽象方法:只在抽象类中定义,方法修饰符不能使用private,virtual,static. 抽象方法如下示: public abstract class Peo ...
- day1---转自金角大王
金角大王等待唐僧的日子 Yesterday, when I was young, There were so many songs that waited to be sung. 博客园 首页 新随笔 ...
- OSI七层模型,作用及其对应的协议
物理层(Physical Layer):利用传输介质为数据链路层提供物理连接,实现比特流的透明传输 数据链路层(Data Link Layer):负责建立和管理节点间的链路 网络层(Network L ...
- JFinalConfig
概述 基于JFinal的web项目需要创建一个继承自JFinalConfig类的子类,该类用于对整个web项目进行配置. JFinalConfig子类需要实现六个抽象方法,如下所示: public c ...
- 【JZOJ3854】【NOIP2014八校联考第2场第2试9.28】分组(group)
MEi Bsny所在的精灵社区有n个居民,每个居民有一定的地位和年龄,ri表示第i个人的地位,ai表示第i个人的年龄. 最近社区里要举行活动,要求几个人分成一个小组,小组中必须要有一个队长,要成为队长 ...