优化与深度学习

优化与估计

尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同。

  • 优化方法目标:训练集损失函数值
  • 深度学习目标:测试集损失函数值(泛化性)
 %matplotlib inline
import sys
import d2lzh1981 as d2l
from mpl_toolkits import mplot3d # 三维画图
import numpy as np
def f(x): return x * np.cos(np.pi * x)
def g(x): return f(x) + 0.2 * np.cos(5 * np.pi * x) d2l.set_figsize((5, 3))
x = np.arange(0.5, 1.5, 0.01)
fig_f, = d2l.plt.plot(x, f(x),label="train error")
fig_g, = d2l.plt.plot(x, g(x),'--', c='purple', label="test error")
fig_f.axes.annotate('empirical risk', (1.0, -1.2), (0.5, -1.1),arrowprops=dict(arrowstyle='->'))
fig_g.axes.annotate('expected risk', (1.1, -1.05), (0.95, -0.5),arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('risk')
d2l.plt.legend(loc="upper right")

优化在深度学习中的挑战

  1. 局部最小值
  2. 鞍点
  3. 梯度消失

局部最小值

 def f(x):
return x * np.cos(np.pi * x) d2l.set_figsize((4.5, 2.5))
x = np.arange(-1.0, 2.0, 0.1)
fig, = d2l.plt.plot(x, f(x))
fig.axes.annotate('local minimum', xy=(-0.3, -0.25), xytext=(-0.77, -1.0),
arrowprops=dict(arrowstyle='->'))
fig.axes.annotate('global minimum', xy=(1.1, -0.95), xytext=(0.6, 0.8),
arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

鞍点

 x = np.arange(-2.0, 2.0, 0.1)
fig, = d2l.plt.plot(x, x**3)
fig.axes.annotate('saddle point', xy=(0, -0.2), xytext=(-0.52, -5.0),
arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

 x, y = np.mgrid[-1: 1: 31j, -1: 1: 31j]
z = x**2 - y**2 d2l.set_figsize((6, 4))
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 2, 'cstride': 2})
ax.plot([0], [0], [0], 'ro', markersize=10)
ticks = [-1, 0, 1]
d2l.plt.xticks(ticks)
d2l.plt.yticks(ticks)
ax.set_zticks(ticks)
d2l.plt.xlabel('x')
d2l.plt.ylabel('y');

梯度消失

 x = np.arange(-2.0, 5.0, 0.01)
fig, = d2l.plt.plot(x, np.tanh(x))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)')
fig.axes.annotate('vanishing gradient', (4, 1), (2, 0.0) ,arrowprops=dict(arrowstyle='->'))

凸性 (Convexity)

基础

集合

函数

 def f(x):
return 0.5 * x**2 # Convex def g(x):
return np.cos(np.pi * x) # Nonconvex def h(x):
return np.exp(0.5 * x) # Convex x, segment = np.arange(-2, 2, 0.01), np.array([-1.5, 1])
d2l.use_svg_display()
_, axes = d2l.plt.subplots(1, 3, figsize=(9, 3)) for ax, func in zip(axes, [f, g, h]):
ax.plot(x, func(x))
ax.plot(segment, func(segment),'--', color="purple")
# d2l.plt.plot([x, segment], [func(x), func(segment)], axes=ax)

Jensen 不等式

性质

  1. 无局部极小值
  2. 与凸集的关系
  3. 二阶条件

无局部最小值

与凸集的关系

 x, y = np.meshgrid(np.linspace(-1, 1, 101), np.linspace(-1, 1, 101),
indexing='ij') z = x**2 + 0.5 * np.cos(2 * np.pi * y) # Plot the 3D surface
d2l.set_figsize((6, 4))
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.contour(x, y, z, offset=-1)
ax.set_zlim(-1, 1.5) # Adjust labels
for func in [d2l.plt.xticks, d2l.plt.yticks, ax.set_zticks]:
func([-1, 0, 1])

凸函数与二阶导数

 def f(x):
return 0.5 * x**2 x = np.arange(-2, 2, 0.01)
axb, ab = np.array([-1.5, -0.5, 1]), np.array([-1.5, 1]) d2l.set_figsize((3.5, 2.5))
fig_x, = d2l.plt.plot(x, f(x))
fig_axb, = d2l.plt.plot(axb, f(axb), '-.',color="purple")
fig_ab, = d2l.plt.plot(ab, f(ab),'g-.') fig_x.axes.annotate('a', (-1.5, f(-1.5)), (-1.5, 1.5),arrowprops=dict(arrowstyle='->'))
fig_x.axes.annotate('b', (1, f(1)), (1, 1.5),arrowprops=dict(arrowstyle='->'))
fig_x.axes.annotate('x', (-0.5, f(-0.5)), (-1.5, f(-0.5)),arrowprops=dict(arrowstyle='->'))

限制条件

拉格朗日乘子法

惩罚项

投影

机器学习(ML)十四之凸优化的更多相关文章

  1. Stanford机器学习---第十四讲.机器学习应用举例之Photo OCR

    http://blog.csdn.net/l281865263/article/details/50278745 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Oc ...

  2. SIGAI机器学习第十四集 支持向量机1

    讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 支持向量机简介线性分类器分类间 ...

  3. 【转】机器学习教程 十四-利用tensorflow做手写数字识别

    模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...

  4. Redis教程(十四):内存优化介绍

    转载于:http://www.itxuexiwang.com/a/shujukujishu/redis/2016/0216/142.html 一.特殊编码: 自从Redis 2.2之后,很多数据类型都 ...

  5. SIGAI机器学习第二十四集 聚类算法1

    讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法 ...

  6. JMeter学习(三十四)测试报告优化

    如果按JMeter默认设置,生成报告如下: 从上图可以看出,结果信息比较简单,对于运行成功的case,还可以将就用着.但对于跑失败的case,就只有一行assert错误信息.(信息量太少了,比较难找到 ...

  7. 机器学习(十四)— kMeans算法

    参考文献:https://www.jianshu.com/p/5314834f9f8e # -*- coding: utf-8 -*- """ Created on Mo ...

  8. 猪猪的机器学习笔记(十四)EM算法

    EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...

  9. 只需十四步:从零开始掌握 Python 机器学习(附资源)

    分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找 ...

随机推荐

  1. springmvc接收json数据的常见方式

    经常使用Ajax异步请求来进行数据传输,传的数据是json数据,json数据又有对象,数组.所有总结下springmvc获取前端传来的json数据方式:1.以RequestParam接收前端传来的是j ...

  2. GPU图形绘制管线简介

    (阅读GPU+编程与CG+语言之阳春白雪下里巴人所得总结) GPU图形绘制管线是描述GPU渲染(把三维世界显示为屏幕上的二维图像)的流程,主要分为三个主要阶段应用程序阶段.几何阶段.光栅阶段. 1.应 ...

  3. 微信小程序----日期时间选择器(自定义精确到分秒或时段)

    声明 bug:由于此篇博客是在bindcolumnchange事件中做的值的改变处理,因此会出现当你选择时,没有点击确定,直接取消返回后,会发现选择框的值依然改变.造成原因:这一点就是由于在bindc ...

  4. python集合的运算

    &  交集  | 并集    - 差集  ^ 异或集 # 在对集合做运算时,不会影响原来的集合,而是返回一个运算结果 # 创建两个集合 s = {1,2,3,4,5} s2 = {3,4,5, ...

  5. 一个简易的 LED 数字时钟实现方法

    这个应该是已经有很多人做过的东西,我应该只是算手痒,想写一下,所以,花了点时间折腾了这个,顺便把 Dark Mode 的处理也加上了. 首先可以很明确的一点,这个真没技术含量存在,只是需要点耐心. L ...

  6. acmPush模块示例demo

    感谢论坛版主 马浩川 的分享. 模块介绍:  阿里移动推送(Alibaba Cloud Mobile Push)是基于大数据的移动智能推送服务,帮助App快速集成移动推送的功能,在实现高效.精确.实时 ...

  7. border-radius属性失效了Ծ‸Ծ

    .btn-circle { width: 30px; height: 30px; text-align: center; padding: 4px ; font-size: 16px; font-we ...

  8. java byte/short/char补充(了解)

    1.在数学运算中会自动提升数据类型为 int 2.在基本赋值中,若右册的常量不超过取值范围,javac 添加 强制转换,否则报错 3.若右册 含有 变量 而不是直接使用常量相加,编译报错 例子 pub ...

  9. 如何高效实用 Git

    Git 工作流 只要项目是多人参与的,那么就需要使用正确的 Git 工作流程. 下面介绍一个简单有效的工作流程. 场景 假设有一个项目,要开发下一代的 Facebook,你就是这个项目的技术 lead ...

  10. 异数OS 2017 DPDK 峰会观后感

    1.DPDK in Container 使用虚拟网卡设备技术为每一个容器分配一个IP 网卡适配器(queue).容器技术可以解决虚拟机技术中虚拟机过于臃肿,难于热迁移的问题,可能可以代替美团OVS方案 ...