Query查询器 与 Filter 过滤器

尽管我们之前已经涉及了查询DSL,然而实际上存在两种DSL:查询DSL(query DSL)和过滤DSL(filter DSL)。
过滤器(filter)通常用于过滤文档的范围,比如某个字段是否属于某个类型,或者是属于哪个时间区间
* 创建日期是否在2014-2015年间?
* status字段是否为success?

* lat_lon字段是否在某个坐标的10公里范围内?

查询器(query)的使用方法像极了filter,但query更倾向于更准确的查找。

* 与full text search的匹配度最高

* 正则匹配

* 包含run单词,如果包含这些单词:runs、running、jog、sprint,也被视为包含run单词
* 包含quick、brown、fox。这些词越接近,这份文档的相关性就越高
查询器会计算出每份文档对于某次查询有多相关(relevant),然后分配文档一个相关性分数:_score。而这个分数会被用来对匹配了的文档进行相关性排序。相关性概念十分适合全文搜索(full-text search),这个很难能给出完整、“正确”答案的领域。

query filter在性能上对比:filter是不计算相关性的,同时可以cache。因此,filter速度要快于query。

下面是使用query语句查询的结果,第一次查询用了300ms,第二次用了280ms.

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 
#blog:  http://xiaorui.cc
{
    "size": 1,
    "query": {
        "bool": {
            "must": [
                {
                    "terms": {
                        "keyword": [
                            "手机",
                            "iphone"
                        ]
                    }
                },
                {
                    "range": {
                        "cdate": {
                            "gt": "2015-11-09T11:00:00"
                        }
                    }
                }
            ]
        }
    }
}
 
{
    "took": 51,
    "timed_out": false,
    "_shards": {
        "total": 30,
        "successful": 30,
        "failed": 0
    },
    "hits": {
        "total": 6818,
        "max_score": 0,
        "hits": []
    }
}

下面是使用filter查询出来的结果,第一次查询时间是280ms,第二次130ms…. 速度确实快了不少,也证明filter走了cache缓存。 但是如果我们对比下命中的数目,query要比filter要多一点,换句话说,更加的精准。

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 
#blog: xiaorui.cc
{
    "size": 0,
    "filter": {
        "bool": {
            "must": [
                {
                    "terms": {
                        "keyword": [
                            "手机",
                            "iphone"
                        ]
                    }
                },
                {
                    "range": {
                        "cdate": {
                            "gt": "2015-11-09T11:00:00"
                        }
                    }
                }
            ]
        }
    }
}
 
 
{
    "took": 145,
    "timed_out": false,
    "_shards": {
        "total": 30,
        "successful": 30,
        "failed": 0
    },
    "hits": {
        "total": 6804,
        "max_score": 0,
        "hits": []
    }
}<span style="font-size:13.2px;line-height:1.5;"></span>

如果你想同时使用query和filter查询的话,需要使用 {query:{filtered:{}}} 来包含这两个查询语法。他们的好处是,借助于filter的速度可以快速过滤出文档,然后再由query根据条件来匹配。

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 
    "query": {
        "filtered": {
            "query":  { "match": { "email": "business opportunity" }},
            "filter": { "term": { "folder": "inbox" }}
        }
    }
}
 
{   "size":0,    
    "query": {
        "filtered": {
            "query": {
                "bool": {
                    "should": [],
                    "must_not": [
                      
                    ],
                    "must": [
                        {
                         "term": {
                            
                                "channel_name":"微信自媒体微信"
                            }
                        }
                  
                    ]
                }
            }
 
        },
        "filter":{
            "range": {
                "idate": {
                    "gte": "2015-09-01T00:00:00",
                    "lte": "2015-09-10T00:00:00"
                    
                    }
                }
        }
    }
}

我们这业务上关于elasticsearch的查询语法基本都是用query filtered方式进行的,我也推荐大家直接用这样的方法。should ,must_not, must 都是列表,列表里面可以写多个条件。 这里再啰嗦一句,如果你的查询是范围和类型比较粗大的,用filter ! 如果是那种精准的,就用query来查询。

{

”bool”:{

”should”:[],   #相当于OR条件

”must_not”:[],  #必须匹配的条件,这里的条件都会被反义

”must”:[]        #必须要有的

}

}

END..

elasticsearch query 和 filter 的区别的更多相关文章

  1. Elasticsearch query和filter的区别

    1.关于Query context和filter context 查询语句的表现行为取决于使用了查询上下文方式还是过滤上下文方式. Query context:查询上下文,回答了“文档是如何被查询语句 ...

  2. ElasticSearch - query vs filter

    query vs filter 来自stackoverflow Stackoverflow - queries-vs-filters Question 题主希望知道Query和Filter的区别 An ...

  3. 以bank account 数据为例,认识elasticsearch query 和 filter

    Elasticsearch 查询语言(Query DSL)认识(一) 一.基本认识 查询子句的行为取决于 query context filter context 也就是执行的是查询(query)还是 ...

  4. elasticsearch中query和filter的区别

    参考博客来自: https://mp.weixin.qq.com/s/tiiveCW3W-oDIgxvlwsmXA?utm_medium=hao.caibaojian.com&utm_sour ...

  5. Elasticsearch 之 query与filter区别

    转载: http://xiaorui.cc/category/elasticsearch/ http://blog.csdn.net/asia_kobe/article/details/5056301 ...

  6. 【转】elasticsearch的查询器query与过滤器filter的区别

    很多刚学elasticsearch的人对于查询方面很是苦恼,说实话es的查询语法真心不简单-  当然你如果入门之后,会发现elasticsearch的rest api设计是多么有意思. 说正题,ela ...

  7. Elasticsearch系列(二)--query、filter、aggregations

    本文基于ES6.4版本,我也是出于学习阶段,对学习内容做个记录,如果文中有错误,请指出. 实验数据: index:book type:novel mappings: { "mappings& ...

  8. Elasticsearch DSL中Query与Filter的不同

    Elasticsearch支持很多查询方式,其中一种就是DSL,它是把请求写在JSON里面,然后进行相关的查询. 举个DSL例子 GET _search { "query": { ...

  9. Query DSL for elasticsearch Query

    Query DSL Query DSL (资料来自: http://www.elasticsearch.cn/guide/reference/query-dsl/) http://elasticsea ...

随机推荐

  1. gmock 简单笔记

    std::shared_ptr<MockThreadRCInvester> spMockaAcc; HelperThreadRCInvester helperAcc; // spMockA ...

  2. indexof方法区分大小写

    1)全部转换为大写:str.toUpperCase().IndexOf(s.toUpperCase()) 2)全部转换为小写:str.toLowerCase().IndexOf(s.toLowerCa ...

  3. iptables 命令大全

    1.连续端口配置 iptables可以方便的配置多个端口.其中根据端口的连续性,又可分为连续端口配置和不连续端口配置. 如: -A INPUT -p tcp –dport 21:25 -j DROP/ ...

  4. 剑指Offer-14:输入一个链表,输出该链表中倒数第k个结点。

    题目描述: 输入一个链表,输出该链表中倒数第k个结点.例如有一个链表有六个节点1,2,3,4,5,6.则它的倒数第二个节点为5 节点定义如下: public class ListNode { int ...

  5. hdu多校第二场 1005 (hdu6595) Everything Is Generated In Equal Probability

    题意: 给定一个N,随机从[1,N]里产生一个n,然后随机产生一个n个数的全排列,求出n的逆序数对的数量,加到cnt里,然后随机地取出这个全排列中的一个非连续子序列(注意这个子序列可以是原序列),再求 ...

  6. 计数dp+概率+大数——(抽屉问题解的个数)zoj3380

    难的地方在于计数dp..给定范围[1,n]的数去填m个位置,要求不能出现超过I个相同的数, 那就用dp[i][j]表示在阶段i,已经填了j个位置的可能解法,那么只要枚举i填的位置数k∈[0,min(j ...

  7. iServer添加Oracle Plus数据源、服务发布的问题

    今天在将以Oracle Plus为数据源的工作空间发布成服务时,发现服务发布完后,看不见任何数据.最后发现,还需要在iserver服务器上安装oracle客户端才行.整理如下: 一.创建空间数据库账户 ...

  8. PAT甲级——A1122 Hamiltonian Cycle【25】

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  9. 左神算法基础班5_1设计RandomPool结构

    Problem: 设计RandomPool结构 [题目] 设计一种结构,在该结构中有如下三个功能: insert(key):将某个key加入到该结构,做到不重复加入. delete(key):将原本在 ...

  10. Django的日常-AJAX

    目录 Django的日常-AJAX AJAX简介 AJAX与JQ的一个实例 AJAX与contentType AJAX传json格式 AJAX传文件 Django的日常-AJAX AJAX简介 首先A ...