一、模型前提与假设

设策略总天数为\(n\)、第\(t\)日大盘的收盘价为\(P_t\)、第\(t\)日的单日收益率为\(r_t\)、\(n\)天的累积收益率为\(r_{cum}\)

假设策略仅买卖大盘指数,第\(t\)日的头寸是根据第\((t-1)\)日收盘价计算出的\(s_{t-1}\),因此第1天的收益率\(r_{1}=0\)

特别注意:为避免未来函数,不能使用\(s_{t}\)计算第\(t\)日的头寸。

二、大盘单日收益率

1. 离散型

\[r_t=\frac{P_t}{P_{t-1}}-1
\]

对应的Python代码为:

df['market_dis'] = df['close']/df['close'].shift()-1

df['market_dis'] = df['close'].pct_change()

2. 连续型

\[r_t=ln\frac{P_t}{P_{t-1}}
\]

对应的Python代码为:

df['market_con'] = np.log(df['close'] / df['close'].shift())

三、大盘累积收益率

1. 离散型

\[\begin{align}
1+r_{cum}&=(1+r_{1})(1+r_{2})\cdots(1+r_{n})\\[1.5ex]
&=\frac{P_{1}}{P_{0}}\cdot \frac{P_{2}}{P_{1}}\cdots\frac{P_{n}}{P_{n-1}}\\[1.5ex]
&=\frac{P_{n}}{P_{0}}
\end{align}
\]

对应的Python代码为:

# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上-1
df['market_dis_cum'] = (1+df['market_dis']).cumprod()

2. 连续型

\[\begin{align}
\text{exp}(r_{cum})& = \text{exp}(r_{1}+r_{2}+\cdots+r_{n}) \\[1.5ex]
& = \text{exp}\left({ln\frac{P_{1}}{P_{0}}+ln\frac{P_{2}}{P_{1}}+\cdots+ln\frac{P_{n}}{P_{n-1}}}\right)\\[1.5ex]
& =\frac{P_{1}}{P_{0}}\cdot\frac{P_{2}}{P_{1}}\cdots\frac{P_{n}}{P_{n-1}}\\[1.5ex]
& =\frac{P_{n}}{P_{0}}\\[2ex]
\end{align}
\]

对应的Python代码为:

# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上取np.log()
df['market_con_cum'] = df['market_con'].cumsum().apply(np.exp)

四、策略单日收益率

1. 离散型

\[r_t=
\begin{cases}
0&,t=1\\[2ex]
s_{t-1}\left(\cfrac{P_t}{P_{t-1}}-1\right)&,t=2,3,\cdots,n\\[2ex]
\end{cases}
\]

对应的Python代码为:

df['strategy_dis'] = df['position'].shift()*df['market_dis']

2. 连续型

\[r_t=
\begin{cases}
0&,t=1\\[2ex]
s_{t-1}ln\cfrac{P_t}{P_{t-1}}&,t=2,3,\cdots,n\\[2ex]
\end{cases}
\]

对应的Python代码为:

df['strategy_con'] = df['position'].shift()*df['market_con']

五、策略累积收益率

1. 离散型

\[\begin{align}
1+r_{cum}&=(1+r_{2})(1+r_{3})\cdots(1+r_{n})\\[1.5ex]
&=\left[1+s_{1}\left(\frac{P_{2}}{P_{1}}-1\right)\right]\left[1+s_{2}\left(\frac{P_{3}}{P_{2}}-1\right)\right]\cdots\left[1+s_{n-1}\left(\frac{P_{n}}{P_{n-1}}-1\right)\right]\\[1.5ex]
\end{align}\\
\]

对应的Python代码为:

# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上-1
df['strategy_dis_cum'] = (1+df['strategy_dis']).cumprod()

2. 连续型

\[\begin{align}
\text{exp}(r_{cum})& = \text{exp}(r_{2}+r_{3}\cdots+r_{n}) \\[1.5ex]
& = \text{exp}\left({s_1ln\frac{P_{2}}{P_{1}}+s_2ln\frac{P_{3}}{P_{2}}+\cdots+s_{n-1}ln\frac{P_{n}}{P_{n-1}}}\right)\\[1.5ex]
& =\left(\frac{P_{2}}{P_{1}}\right)^{s_1}\left(\frac{P_{3}}{P_{2}}\right)^{s_2}\cdots\left(\frac{P_{n}}{P_{n-1}}\right)^{s_{n-1}}\\[1.5ex]
\end{align}
\]

对应的Python代码为:

# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上取np.log()
df['strategy_con_cum'] = df['strategy_con'].cumsum().apply(np.exp)

大盘及策略收益率的公式推导与Python代码的更多相关文章

  1. 最小二乘法公式推导及Python实现

    机器学习使用线性回归方法建模时,求损失函数最优解需要用到最小二乘法.相信很多朋友跟我一样,想先知道公式是什么,然后再研究它是怎么来的.所以不多说,先上公式. 对于线性回归方程\(f(x) = ax + ...

  2. 一个 11 行 Python 代码实现的神经网络

    一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转 ...

  3. XGBoost参数调优完全指南(附Python代码)

    XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/ ...

  4. 学习TensorFlow,浅析MNIST的python代码

    在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661.作为小码农的我,最近一直在学习tensorflow,主要使用pyth ...

  5. PEP 8 - Python代码样式指南

    PEP 8 - Python代码样式指南 PEP: 8 标题: Python代码风格指南 作者: Guido van Rossum <python.org上的guido>,Barry Wa ...

  6. catboost原理以及Python代码

    原论文:    http://learningsys.org/nips17/assets/papers/paper_11.pdf catboost原理: One-hot编码可以在预处理阶段或在训练期间 ...

  7. 一种部署 Python 代码的新方法

    在Nylas,我们喜欢使用Python进行开发.它的语法简单并富有表现力,拥有大量可用的开源模块和框架,而且这个社区既受欢迎又有多样性.我们的后台是纯用 Python 写的,团队也经常在 PyCon ...

  8. Python代码编码规范

    目录 1. Introduction 介绍 2. A Foolish Consistency is the Hobgoblin of Little Minds 尽信书,则不如无书 3. Code la ...

  9. 改改Python代码,运行速度还能提升6万倍

    这份最新研究指出,在后摩尔定律时代,人类所获得的的算力提升将更大程度上来源于计算堆栈的「顶层」,即软件.算法和硬件架构,这将成为一个新的历史趋势. 很多人学习python,不知道从何学起.很多人学习p ...

随机推荐

  1. Map.Entry 类使用简介(转)

    Map.Entry 类使用简介(转)   你是否已经对每次从Map中取得关键字然后再取得相应的值感觉厌倦?使用Map.Entry类,你可以得到在同一时间得到所有的信息.标准的Map访问方法如下: Se ...

  2. POJ 2018 Best Cow Fences(二分答案)

    题目链接:http://poj.org/problem?id=2018 题目给了一些农场,每个农场有一定数量的奶牛,农场依次排列,问选择至少连续排列F个农场的序列,使这些农场的奶牛平均数量最大,求最大 ...

  3. 如何预测股票分析--先知(Prophet)

    在上一篇中,我们探讨了自动ARIMA,但是好像表现的还是不够完善,接下来看看先知的力量! 先知(Prophet) 有许多时间序列技术可以用在股票预测数据集上,但是大多数技术在拟合模型之前需要大量的数据 ...

  4. 网站调用qq第三方登录

    1. 准备工作 (1) 接入QQ登录前,网站需首先进行申请,获得对应的appid与appkey,以保证后续流程中可正确对网站与用户进行验证与授权. ① 注册QQ互联开发者账号  网址  https:/ ...

  5. auto_ptr的VC版本源码剖析

    auto_ptr是当前C++标准库(STL)中提供的一种智能指针,包含于头文件 #include<memory> .auto_ptr 能够方便的管理单个堆内存对象,在你不用的时候自动帮你释 ...

  6. Mysq的安装

    1.安装包下载 2.安装教程 (1)配置环境变量 (2)生成data文件 (3)安装MySQL (4)启动服务 (5)登录MySQL (6)查询用户密码 (7)设置修改用户密码 (8)退出 1.安装包 ...

  7. 08day 操作命令以及目录结构

    yum /var/log目录(日志文件)两个重要目录:message--记录系统或服务程序运行状态信息 secure--记录用户登录信息 tail -f 查看日志方法    head 查问文件头部

  8. find 报错 find: paths must precede expression:

    编写shell脚本,报错,如下面 [root@localhost backup]#find ./ -name mysqldump* -mtime +3 -delete [root@localhost ...

  9. 理解ASP.NET Core验证模型 Claim, ClaimsIdentity, ClaimsPrincipal

    Claim, ClaimsIdentity, ClaimsPrincipal: Claim:姓名:xxx,领证日期:xxx ClaimsIdentity:身份证/驾照 ClaimsPrincipal: ...

  10. Servlt入门

    Servlt入门 java的两种体系结构 C/S (客户端/服务器)体系结构  通讯效率高且安全,但系统占用多 B/S (浏览器/服务器)体系结构    节约开发成本 C/S (客户端/服务器)体系结 ...