1058 - Parallelogram Counting 计算几何
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input
Input starts with an integer T (≤ 15), denoting the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
Output
For each case, print the case number and the number of parallelograms that can be formed.
Sample Input |
Output for Sample Input |
2 6 0 0 2 0 4 0 1 1 3 1 5 1 7 -2 -1 8 9 5 7 1 1 4 8 2 0 9 8 |
Case 1: 5 Case 2: 6 |
分析:学了这么多年数学,然而只知道平行四边形对角线交于一点,却没想到只要存在两点的中点与另两点的中点相同,就能构成平行四边形。
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define N 510000
struct node
{
int x;
int y;
}arr[N], mid[N];
bool cmp(struct node a, struct node b)
{
if(a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
int main(void)
{
int T, cas, n;
scanf("%d", &T);
cas = 0;
while(T--)
{
cas++;
memset(mid, 0, sizeof(mid));
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
scanf("%d%d", &arr[i].x, &arr[i].y);
}
int num = 0;
for(int i = 0; i < n-1; i++)
{
for(int j = i+1; j < n; j++)
{
mid[num].x = arr[i].x + arr[j].x;
mid[num].y = arr[i].y + arr[j].y;
num++;
}
}
sort(mid, mid+num, cmp);/// 排序是为了方便下面比较
int cnt = 1;
int ans = 0;
int flag = 0;
for(int i = 1; i < num; i++)
{
if(mid[i].x == mid[flag].x && mid[i].y == mid[flag].y)
{
cnt++;
}
else
{
ans += cnt * (cnt - 1) / 2;///计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2)
cnt = 1;
flag = i;
}
}
if(cnt>1)
ans += (cnt - 1) * cnt / 2; /// 判断循环的最后一组数据,如果也存在相同的点,就加上
printf("Case %d: %d\n", cas, ans);
}
return 0;
}
1058 - Parallelogram Counting 计算几何的更多相关文章
- LightOJ - 1058 - Parallelogram Counting(数学,计算几何)
链接: https://vjudge.net/problem/LightOJ-1058 题意: There are n distinct points in the plane, given by t ...
- Light OJ - 1058 Parallelogram Counting(判定平行四边形)
Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...
- LightOJ 1058 - Parallelogram Counting 几何思维
http://www.lightoj.com/volume_showproblem.php?problem=1058 题意:给你顶点,问能够成多少个平行四边形. 思路:开始想使用长度来扫描有多少根,但 ...
- Parallelogram Counting(平行四边形个数,思维转化)
1058 - Parallelogram Counting PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit ...
- 计算几何 + 统计 --- Parallelogram Counting
Parallelogram Counting Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5749 Accepted: ...
- POJ 1971 Parallelogram Counting (Hash)
Parallelogram Counting Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 6895 Acc ...
- POJ 1971 Parallelogram Counting
题目链接: http://poj.org/problem?id=1971 题意: 二维空间给n个任意三点不共线的坐标,问这些点能够组成多少个不同的平行四边形. 题解: 使用的平行四边形的判断条件:对角 ...
- POJ 1791 Parallelogram Counting(求平行四边形数量)
Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...
- POJ 1971-Parallelogram Counting,暴力1063ms!
Parallelogram Counting 刚学hash还不会用,看到5000ms的时限于是想着暴力来一发应该可以过.以前做过类似的题,求平行四边形个数,好像是在CF上做的,但忘了时限是多少了,方法 ...
随机推荐
- Python知识体系框架 思维导图
技术文档已经独立整理! 请移步个人技术文档:https://anxiangchegu.github.io/technical-doc 如需更多Java.Python.大数据体系知识,请稳移步个人技术文 ...
- Unity事件系统EventSystem简析
相关组件和类 EventSystem 1.负责InputModule的切换(因为现在游戏大部分都只有一个StanaloneInputModule,所以切换这部分可以先不考虑). 2.负责InputMo ...
- kaggle预测房价的代码步骤
# -*- coding: utf-8 -*- """ Created on Sat Oct 20 14:03:05 2018 @author: 12958 " ...
- numpy 数值的修改
一.步骤 1.查找值 使用数组的索引和切片 2.修改值 直接赋值 例子 import numpy as np arr1 = np.arange(0, 24).reshape(4, 6) # 使用数组的 ...
- 机器学习-MNIST数据集使用二分类
一.二分类训练MNIST数据集练习 %matplotlib inlineimport matplotlibimport numpy as npimport matplotlib.pyplot as p ...
- 关于PDF阅读器
获取流程 1.点击下载xodo 2.跳转到如下界面,单击箭头所指的版本: 3.单击转到 中国-中文 4.点击获取 5.在跳出来的界面点击红框 6.打开本机的Microsoft Store下载应用 介绍 ...
- GP工作室-团队项目Beta冲刺
GP工作室-团队项目Beta冲刺 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience/ 这个作业要求 ...
- Lobooi个人作业:阅读与准备作业
这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience 这个作业要求在哪里 https://edu.cn ...
- 通过示例学习rholang(下部:课程8-13)
课程8——状态通道和方法 保存数据 到现在为止,你已经很擅长于发送数据到元组空间和从元组空间中获取数据.但是无论你在什么时候进行计算,你有时需要把一些数据放在一边晚点才使用.几乎所有编程语言都有变量的 ...
- centos7.6+python3+apache2.4+django2.1.2网站部署总结
本次网站部署是使用了django2.1.2版本部署,由于centos自带的Python2.7不支持django2.0以上版本,故需要安全python3的环境.python3.apache的安装不做具体 ...