1058 - Parallelogram Counting

There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

Input

Input starts with an integer T (≤ 15), denoting the number of test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

Output

For each case, print the case number and the number of parallelograms that can be formed.

Sample Input

Output for Sample Input

2

6

0 0

2 0

4 0

1 1

3 1

5 1

7

-2 -1

8 9

5 7

1 1

4 8

2 0

9 8

Case 1: 5

Case 2: 6

分析:学了这么多年数学,然而只知道平行四边形对角线交于一点,却没想到只要存在两点的中点与另两点的中点相同,就能构成平行四边形。

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define N 510000

struct node
{
int x;
int y;
}arr[N], mid[N];
bool cmp(struct node a, struct node b)
{
if(a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
int main(void)
{
int T, cas, n;

scanf("%d", &T);
cas = 0;

while(T--)
{
cas++;
memset(mid, 0, sizeof(mid));

scanf("%d", &n);

for(int i = 0; i < n; i++)
{
scanf("%d%d", &arr[i].x, &arr[i].y);
}
int num = 0;

for(int i = 0; i < n-1; i++)
{
for(int j = i+1; j < n; j++)
{
mid[num].x = arr[i].x + arr[j].x;
mid[num].y = arr[i].y + arr[j].y;
num++;
}
}
sort(mid, mid+num, cmp);/// 排序是为了方便下面比较
int cnt = 1;
int ans = 0;
int flag = 0;

for(int i = 1; i < num; i++)
{
if(mid[i].x == mid[flag].x && mid[i].y == mid[flag].y)
{
cnt++;
}
else
{
ans += cnt * (cnt - 1) / 2;///计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2)
cnt = 1;
flag = i;
}
}
if(cnt>1)
ans += (cnt - 1) * cnt / 2; /// 判断循环的最后一组数据,如果也存在相同的点,就加上
printf("Case %d: %d\n", cas, ans);
}
return 0;
}

1058 - Parallelogram Counting 计算几何的更多相关文章

  1. LightOJ - 1058 - Parallelogram Counting(数学,计算几何)

    链接: https://vjudge.net/problem/LightOJ-1058 题意: There are n distinct points in the plane, given by t ...

  2. Light OJ - 1058 Parallelogram Counting(判定平行四边形)

    Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...

  3. LightOJ 1058 - Parallelogram Counting 几何思维

    http://www.lightoj.com/volume_showproblem.php?problem=1058 题意:给你顶点,问能够成多少个平行四边形. 思路:开始想使用长度来扫描有多少根,但 ...

  4. Parallelogram Counting(平行四边形个数,思维转化)

    1058 - Parallelogram Counting    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit ...

  5. 计算几何 + 统计 --- Parallelogram Counting

    Parallelogram Counting Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5749   Accepted: ...

  6. POJ 1971 Parallelogram Counting (Hash)

          Parallelogram Counting Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6895   Acc ...

  7. POJ 1971 Parallelogram Counting

    题目链接: http://poj.org/problem?id=1971 题意: 二维空间给n个任意三点不共线的坐标,问这些点能够组成多少个不同的平行四边形. 题解: 使用的平行四边形的判断条件:对角 ...

  8. POJ 1791 Parallelogram Counting(求平行四边形数量)

    Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...

  9. POJ 1971-Parallelogram Counting,暴力1063ms!

    Parallelogram Counting 刚学hash还不会用,看到5000ms的时限于是想着暴力来一发应该可以过.以前做过类似的题,求平行四边形个数,好像是在CF上做的,但忘了时限是多少了,方法 ...

随机推荐

  1. python 打印乘法表

    for i in range(1, 10): for j in range(1, i+1): print('%s * %s = %s' % (i, j, i*j), end=' ') print('' ...

  2. 机器学习-决策树 Decision Tree

    咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sk ...

  3. lisp学习总结(二)-----lisp应该探索发展的方向

    现在流行一种语言叫做Clojure,他是lisp直接嫁接到java的结果,但是我就感觉这却成为lisp的失败. 因为lisp最强大最有优势的能力是构造抽象,构造设计思想,而不是运行期以确定的方式运行, ...

  4. 信息: TLD skipped. URI: http://www.fusioncharts.com/jsp/core is already defined

    二月 02, 2018 11:43:28 上午 org.apache.catalina.startup.TaglibUriRule body 信息: TLD skipped. URI: http:// ...

  5. [组合数学][多项式][拉格朗日插值]count

    源自 ditoly 大爷的 FJ 省队集训课件 Statement 有 \(m\) 个正整数变量,求有多少种取值方案 使得所有变量的和不超过 \(S\) 并且前 \(n\) 个变量的值都不超过 \(t ...

  6. (分块)Holes CodeForces - 13E

    题意 n(n≤105)个洞排成一条直线,第ii个洞有力量值ai,当一个球掉进洞ii时就会被立刻弹到i+ai,直到超出n.进行m(m≤105)次操作: ·修改第i个洞的力量值ai. ·在洞xx上放一个球 ...

  7. 《爬虫学习》(四)(使用lxml,bs4库以及正则表达式解析数据)

    1.XPath: XPath(XML Path Language)是一门在XML和HTML文档中查找信息的语言,可用来在XML和HTML文档中对元素和属性进行遍历. 工具:扩展商店里搜索:XPath ...

  8. 个人任务day4

    今日任务: 完成注册和登录界面的绘制,并创建用户数据库. 昨日成果: 完成博客数据库的录入和界面跳转.

  9. 01-前言&WEB标准

    人生苦短,要学就只学有用的 [前端教学-前言] 初识web开发 我们先来认识一下web前端 其实前端的工作,大体的概括就是:根据美工给的设计稿,变成web网页,使用后天的接口实现数据的渲染,要是高端一 ...

  10. SpringCloud与微服务Ⅹ --- SpringCloud Config分布式配置中心

    一.SpringCloud Config是什么 分布式系统面临的问题 --- 配置问题 微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统中会出现大量的服务.由于每个 ...