pytorch之 optimizer comparison
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.optim
# torch.manual_seed(1) # reproducible LR = 0.01
BATCH_SIZE = 32
EPOCH = 12 # fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) # plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show() # put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,) # default network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x if __name__ == '__main__':
# different nets
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] # different optimizers
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # record loss # training
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (b_x, b_y) in enumerate(loader): # for each training step
for net, opt, l_his in zip(nets, optimizers, losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()
pytorch之 optimizer comparison的更多相关文章
- pytorch 7 optimizer 优化器 加速训练
import torch import torch.utils.data as Data import torch.nn.functional as F import matplotlib.pyplo ...
- [源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练
[源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练 目录 [源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练 0x00 摘要 0 ...
- [源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer
[源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer 目录 [源码解析] PyTorch 分布式(14) - ...
- pytorch adam 源码 关于优化函数的调整 optimizer 调参 重点
关于优化函数的调整拆下包:https://ptorch.com/docs/1/optim class torch.optim.Optimizer(params, defaults)所有优化的基类. 参 ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- Pytorch学习笔记08----优化器算法Optimizer详解(SGD、Adam)
1.优化器算法简述 首先来看一下梯度下降最常见的三种变形 BGD,SGD,MBGD,这三种形式的区别就是取决于我们用多少数据来计算目标函数的梯度,这样的话自然就涉及到一个 trade-off,即参数更 ...
- pytorch bert 源码解读
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...
- Comparison of B-Tree and Hash Indexes
Understanding the B-tree and hash data structures can help predict how different queries perform on ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
随机推荐
- cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!
2450. 距离 ★★ 输入文件:distance.in 输出文件:distance.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...
- Gym - 101982F 扫描线+线段树
题目链接:https://codeforces.com/gym/101982/attachments 要你求覆盖奇数次的矩形面积并,每次更新时减去原先的值即可实现奇数次有效,下推时为保证线段长度不变左 ...
- MOS 常用链接地址
主页面类 Exadata主页面 Exadata Database Machine and Exadata Storage Server Supported Versions (Doc ID 8888 ...
- MVEL2.0的使用实例(一)
本文是对java整合mvel2.0的一点示例: 如果表达式中有变量,解析表达式时必须传一个map MVEL.eval(expression, vars); /** * 基本解析表达式 */@Testp ...
- cors中间件
class MiddlewareMixin(object): def __init__(self, get_response=None): self.get_response = get_respon ...
- 缓存读写策略 - Cache Aside.md
场景描述 比如一条数据同时存在数据库.缓存,现在你要更新此数据,你会怎么更新? 先更新数据库?还是先更新缓存? 其实这两种方式都有问题. (1)先更新数据库,后更新缓存 这样会造成数据不一致. A 先 ...
- [bzoj4011] [洛谷P3244] [HNOI2015] 落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂--我们也 ...
- 1. RevitAPI 基础(上)
一 重要的基本设置: 1. 类库:revitAPI.DLL, revitAPIUI.DLL,个人理解前者包括了revit软件所特有的数据类型及软件中存在的全部后台数据,而后者是包含了大量与实现UI交互 ...
- 插入数据值 设置标签属性的值 来自 精通ASP-NET-MVC-5-弗瑞曼
- Halo-个人独立博客系统
项目地址:https://github.com/halo-dev/halo 安装指导:https://halo.run/guide/ 简介: Halo 是一款现代化的个人独立博客系统,给习惯写博客 ...