PROBLEM: OmniAnomaly

multivariate time series anomaly detection + unsupervised

主体思想: input: multivariate time series to RNN ------> capture the normal patterns -----> reconstruct input data by the representations ------> use the reconstruction probabilities to determine anomalies.

INTRODUCTION:

1. The first challenge is how to learn robust latent representations, considering both the temporal dependence and stochasticity of multivariate time series.

-------stochastic RNN + explicit temporal dependence among stochastic variables.

Stochastic variables are latent representations of input data and their quality is the key to model performance.

Their approach glues GRU and VAE with two key techniques:

  • stochastic variable connection technique: explicitly model temporal dependence among stochastic variables in the latent space.
  • Planar Normalizing Flows, which uses a series of invertible mappings可逆映射 to learn non-Gaussian posterior distributions in latent stochastic space.

2. The second challenge is how to provide interpretation to the detected entity-level anomalies, given the stochastic deep learning approaches.

Challenge: 1. capture long-term dependence. 2. capture probability distributions of multivariate time series. 3. how to interpret your results (unsupervised learning)

EVIDENCE: literature 5 shown that explicitly modeling the temporal dependence are better.

RELATED WORK:

PRELIMINARIES:

Problem statement: 以时序数据的个数作为维度,M个TS, x 属于R[M*N], x_t为一个M维的列向量,

gru, vae, and stochastic gradient variational bayes

DESIGN

OmniAnomaly structure: returns an anomaly score for x_t.

  • online detection
  • offline detection
    • data preprocessing: data standardization, sequence segmentation through sliding windows T+1;
    • input: multivariate time series inside a window, ----------Model training ------------output: an anomaly score for each observation ------- automatic threshold selection;

Detection: detect anomalies based on the reconstruction probability of x_t.

Loss function: ELBO;

Variational inference algorithms: SGVB;

Output: a univariate time series of anomaly scores

Automatic thresholds selection: extreme value theory + peaks-over-threshold;


1. use GRU to capture complex temporal dependence in x-space.

2. apply VAE to map observations to stochastic variables.

3. explicitly model temporal dependence among latent space, they propose the stochastic variable connection technique.

4. adopt planar NF.

Evaluation:

We use Precision, Recall, F1-Score (denoted as F1) to evaluate the performance of OmniAnomaly.

Baseline:

  1. LSTM with nonparametric dynamic thresholding
  2. EncDec-AD
  3. DAGMM
  4. LSTM-VAE
  5. Donut; 采取别的方式使donut适用于multivariate TS.

Supplementary knowledge:

1. VAE:

inference net qnet + generative net pnet.

2. GRU: gate recurrent unit

Reference

  1. 人人都能看懂的GRU
  2. 变分自编码器VAE:原来是这么一回事 | 附开源代码

PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network的更多相关文章

  1. PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications

    Problem: unsupervised anomaly detection for seasonal KPIs in web applications. Donut: an unsupervise ...

  2. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  3. "Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network" 解读

    简介:这是一篇17年的CVPR,作者提出使用现有的人脸识别深度神经网络Resnet101来得到一个具有鲁棒性的人脸模型. 原文链接:https://www.researchgate.net/publi ...

  4. Anomaly Detection for Time Series Data with Deep Learning——本质分类正常和异常的行为,对于检测异常行为,采用预测正常行为方式来做

    A sample network anomaly detection project Suppose we wanted to detect network anomalies with the un ...

  5. Machine Learning No.10: Anomaly detection

    1. Algorithm 2. evaluating an anomaly detection system 3. anomaly detection vs supervised learning 4 ...

  6. PP: Time series anomaly detection with variational autoencoders

    Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...

  7. Time Series Anomaly Detection

    这里有个2015年的综述文章,概括的比较好,各种技术的适用场景.  https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concep ...

  8. PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval

    from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...

  9. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

随机推荐

  1. 正则表达式验证IP地址(绝对正确)

    正则验证合法_有效的IP地址(ipv4/ipv6) 不墨迹直接上代码: 正则表达式: /^((2[0-4]\d|25[0-5]|[01]?\d\d?)\.){3}(2[0-4]\d|25[0-5]|[ ...

  2. HTML连载68-形变中心点、形变中心轴

    一. 形变中心点介绍 <style> ul li { width: 100px; height: 100px; list-style: none; float:left; margin:0 ...

  3. 根据js轮播图原理写出合理的结构与样式、并实现js交互效果

    在JS中,能用 . 的地方一般都可以用 [ ] 取代 index.html <!DOCTYPE html> <html lang="en"> <hea ...

  4. 【python基础语法】第5天作业练习题

    import random """ 1.一家商场在降价促销.如果购买金额50-100元(包含50元和100元)之间,会给10%的折扣(打九折), 如果购买金额大于100元 ...

  5. Linux高性能服务器编程:Linux服务器程序规范

    Linux服务器程序一般以后台进程形式运行,后台进程又称守护进程.它没有控制终端,不会接收到用户输入.守护进程的父进程通常是init进程(PID为1). Linux服务器程序有一套日志系统 Linux ...

  6. 洛谷新手题 P1028 数的计算题解

    题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数nn): 先输入一个自然数nn(n \le 1000n≤1000),然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个 ...

  7. 最新2019Pycharm安装教程,亲测!最新2019pycharm安装!如何安装Pycharm2019版本!如何安装2019Pycharm永久教程!2019Pycharm永久安装!

    Pycharm安装 在这插一个小话题哈,Pycharm只是一个编译器,并不能代替Python,如果要使用Python,还是需要安装Python的哈 1.Pycharm下载安装 Pycharm下载 Py ...

  8. 斯坦福发布2019全球AI报告:中国论文数量超美国,自动驾驶汽车领域获投资最多

    近日,斯坦福联合MIT.哈佛.OpenAI等院校和机构发布了一份291页的<2019年度AI指数报告>. 这份长达291页的报告从AI的研究&发展.会议.技术性能.经济.教育.自动 ...

  9. ubuntu--- tracker/libdeepsort.so 找不到cv报错

    一.刚开始解决尝试:因为“删掉lib下的libdeepsort.so报错”,原先以为是 libdeepsort.so 需要拷贝到 /lib路径下的问题,可是因为后来的工程有的好使,又的不好使了.''' ...

  10. job无法自动运行基于ABP后台服务 - 后台作业和后台工人

    原因: 后台作业和后台工人仅在你的应用程序运行的时候才工作.如果web应用长时间没有被请求执行,Asp.Net应用默认是关闭的 解决方案: 应用程序池(Application Pool),Proces ...