pytorch处理模型过拟合
演示代码如下
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
# make fake data
n_data = torch.ones(, )
x0 = torch.normal(*n_data, ) #每个元素(x,y)是从 均值=*n_data中对应位置的取值,标准差为1的正态分布中随机生成的
y0 = torch.zeros() # 给每个元素一个0标签
x1 = torch.normal(-*n_data, ) # 每个元素(x,y)是从 均值=-*n_data中对应位置的取值,标准差为1的正态分布中随机生成的
y1 = torch.ones() # 给每个元素一个1标签
x = torch.cat((x0, x1), ).type(torch.FloatTensor) # shape (, ) FloatTensor = -bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (,) LongTensor = -bit integer
# torch can only train on Variable, so convert them to Variable
x, y = Variable(x), Variable(y) # draw the data
plt.scatter(x.data.numpy()[:, ], x.data.numpy()[:, ], c=y.data.numpy())#c是一个颜色序列 #plt.show()
#神经网络模块
net2 = torch.nn.Sequential(
torch.nn.Linear(,),
torch.nn.Dropout(0.2),#处理过拟合,当然这个模型本身很简单,不需要处理过拟合,这个只是一个演示
torch.nn.ReLU(),
torch.nn.Linear(,)
) plt.ion()#在Plt.ion和plt.ioff之间的代码,交互绘图
plt.show()
#神经网络优化器,主要是为了优化我们的神经网络,使他在我们的训练过程中快起来,节省社交网络训练的时间。
optimizer = torch.optim.SGD(net2.parameters(),lr = 0.01)#其实就是神经网络的反向传播,第一个参数是更新权重等参数,第二个对应的是学习率
loss_func = torch.nn.CrossEntropyLoss()#标签误差代价函数 for t in range():
out = net2(x)
loss = loss_func(out,y)#计算损失
optimizer.zero_grad()#梯度置零
loss.backward()#反向传播
optimizer.step()#计算结点梯度并优化,
if t % == :
net2.eval()#模型做预测的时候不需要dropout,切换为eval()模式
plt.cla()# Clear axis即清除当前图形中的之前的轨迹
prediction = torch.max(F.softmax(out), )[]#转换为概率,后面的一是最大值索引,如果为0则返回最大值
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, ], x.data.numpy()[:, ], c=pred_y, s=, lw=, cmap='RdYlGn')
accuracy = sum(pred_y == target_y) / .#求准确率
plt.text(1.5, -, 'Accuracy=%.2f' % accuracy, fontdict={'size': , 'color': 'red'})
plt.pause(0.1)
net2.train()#切花为训练模式 plt.ioff()
plt.show()
注意model.eval和model.train的使用
pytorch处理模型过拟合的更多相关文章
- [炼丹术]使用Pytorch搭建模型的步骤及教程
使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加 ...
- PyTorch保存模型与加载模型+Finetune预训练模型使用
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...
- Pytorch线性规划模型 学习笔记(一)
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...
- [Pytorch]深度模型的显存计算以及优化
原文链接:https://oldpan.me/archives/how-to-calculate-gpu-memory 前言 亲,显存炸了,你的显卡快冒烟了! torch.FatalError: cu ...
- pytorch 建立模型的几种方法
利用pytorch来构建网络模型,常用的有如下三种方式 前向传播网络具有如下结构: 卷积层-->Relu层-->池化层-->全连接层-->Relu层 对各Conv2d和Line ...
- Pytorch | BERT模型实现,提供转换脚本【横扫NLP】
<谷歌终于开源BERT代码:3 亿参数量,机器之心全面解读>,上周推送的这篇文章,全面解读基于TensorFlow实现的BERT代码.现在,PyTorch用户的福利来了:一个名为Huggi ...
- 从头学pytorch(九):模型构造
模型构造 nn.Module nn.Module是pytorch中提供的一个类,是所有神经网络模块的基类.我们自定义的模块要继承这个基类. import torch from torch import ...
- Pytorch 分割模型构建和训练【直播】2019 年县域农业大脑AI挑战赛---(四)模型构建和网络训练
对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始 ...
- 使用Pytorch搭建模型
本来是只用Tenorflow的,但是因为TF有些Numpy特性并不支持,比如对数组使用列表进行切片,所以只能转战Pytorch了(pytorch是支持的).还好Pytorch比较容易上手,几乎完美复制 ...
随机推荐
- 路由网关--spring cloud zuul
路由网关--spring boot Zuul 1.为什么需要Zuul? Zuul Ribbon 以及 Eureka 相结合,可以实现智能路由和负载均衡的功能, Zuul 能够将请求流量按某种策略分发到 ...
- java输入一个整数N,打印1~n位数
举个栗子:输入 3 : 打印1,2,3......999 这里要注意一个坑,不可以直接算出最大的数,然后从1开始打印 .因为当n足够大时,n位数必定会超出int范围和long范围 所以我们需要用字符串 ...
- Java中udp/tcp的发送和接收
InetAddress UDP例程: 发送数据: 接收数据: 结果: TCP例程: 发送数据: 接收数据: 结果:
- Mysql学习笔记(004)- 条件查询
条件查询 #进阶2:条件查询 /* 语法: select 查询列表③ from 表名① where 条件筛选② 分类: 一.按条件表达式筛选 条件运算符:> < = != <> ...
- jQuery, js 验证两次输了密码的一相同
<div class="form-group"> <label class="col-sm-2 control-label font"> ...
- Android中查看当前Activity是否销毁
进入到Android-sdk中platform-tools目录 在命令行中执行以下命令 adb shell dumpsys activity>activity.txt 可以将当前的四大组件(Ac ...
- docker 网络和/etc/docker/daemon.json文件详情
/etc/docker/daemon.json(没有就创建) [root@master ~]# /etc/docker/deamon.json { "registry-mirrors&quo ...
- BAT批处理知识 及 常用批处理
1.常用DOS命令:https://blog.csdn.net/qq_38676810/article/details/79584531 或 https://www.jb51.net/articl ...
- js总结体会
1.表单元素提交之后(不刷新)数据还是会存在的,想要提交之后清除数据可以在ajax提交数据后,用reset()方法清除数据. 2.js中怎么判断哪个单选控件被选中了呢,即表单控件被选中哪些属性发生了变 ...
- es批量索引
使用Python操作Elasticsearch数据索引的教程 这篇文章主要介绍了使用Python操作Elasticsearch数据索引的教程,Elasticsearch处理数据索引非常高效,要的朋友可 ...