非常好的一道图论问题.

显然,我们要求城市间的最小生成树,然后查询路径最大值.

然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围.

显然,如果两个城市的管辖范围没有交集的话连边一定不是优秀的(一定会有一种都在管辖范围之内的连边方式来代替这种连边方式)

然后由于每一个点只属于一个城市的管辖范围,所以每个点只会扩展一次,这个 BFS 的复杂度是线性的.

code:

#include <bits/stdc++.h>
#define N 2006
#define M 200005
#define ll long long
using namespace std;
namespace IO {
void setIO(string s) {
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
char str[N];
int n,m,P,Q,edges;
int dep[M];
int hd[M],to[M<<1],nex[M<<1],val[M<<1],vis[M],fa[18][M],Max[18][M];
int wall[N][N],id[N][N],dis[N][N],bel[N][N],p[N*N];
int dx[]={-1,0,1,0};
int dy[]={0,1,0,-1};
struct node {
int x,y;
node(int x=0,int y=0):x(x),y(y){}
};
struct edge {
int x,y;
edge(int x=0,int y=0):x(x),y(y){}
};
queue<node>q;
vector<edge>G[N*N];
void add(int u,int v,int c) {
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c;
}
void init() {
for(int i=0;i<N*N;++i) p[i]=i;
}
int find(int x) {
return p[x]==x?x:p[x]=find(p[x]);
}
int merge(int x,int y) {
x=find(x);
y=find(y);
if(x==y)
return 0;
p[x]=y;
return 1;
}
void dfs(int x,int ff) {
vis[x]=1;
fa[0][x]=ff;
dep[x]=dep[ff]+1;
for(int i=1;i<18;++i)
fa[i][x]=fa[i-1][fa[i-1][x]];
for(int i=1;i<18;++i)
Max[i][x]=max(Max[i-1][fa[i-1][x]],Max[i-1][x]);
for(int i=hd[x];i;i=nex[i]) {
int v=to[i];
if(v!=ff)
Max[0][v]=val[i],dfs(v,x);
}
}
int query(int x,int y) {
int ma=0,i,j;
if(dep[x]!=dep[y]) {
if(dep[y]<dep[x]) swap(x,y);
for(i=17;i>=0;--i) {
if(dep[fa[i][y]]>=dep[x]) {
ma=max(ma,Max[i][y]);
y=fa[i][y];
}
}
}
if(x==y) return ma;
for(i=17;i>=0;--i) {
if(fa[i][y]!=fa[i][x]) {
ma=max(ma,max(Max[i][y],Max[i][x]));
x=fa[i][x],y=fa[i][y];
}
}
return max(ma,max(Max[0][y],Max[0][x]));
}
int main() {
// IO::setIO("input");
int i,j,idx=0;
scanf("%d%d%d%d",&n,&m,&P,&Q);
for(i=1;i<=n;++i) {
scanf("%s",str+1);
for(j=1;j<=m;++j) {
id[i][j]=++idx;
wall[i][j]=(str[j]=='#');
}
}
for(i=1;i<=P;++i) {
int x,y;
scanf("%d%d",&x,&y);
bel[x][y]=i;
q.push(node(x,y));
}
while(!q.empty()) {
node e=q.front(); q.pop();
int x=e.x,y=e.y;
for(i=0;i<4;++i) {
int X=x+dx[i],Y=y+dy[i];
if(id[X][Y]&&!wall[X][Y]) {
if(!bel[X][Y]) {
bel[X][Y]=bel[x][y];
dis[X][Y]=dis[x][y]+1;
q.push(node(X,Y));
}
else if(bel[X][Y]!=bel[x][y]){
G[dis[X][Y]+dis[x][y]].push_back(edge(bel[X][Y],bel[x][y]));
}
}
}
}
init();
for(i=0;i<N*N;++i) {
for(j=0;j<G[i].size();++j) {
int u=G[i][j].x,v=G[i][j].y;
if(merge(u,v)) {
add(u,v,i);
add(v,u,i);
}
}
}
for(i=1;i<=P;++i) {
if(!vis[i]) {
dfs(i,0);
}
}
for(i=1;i<=Q;++i) {
int x,y;
scanf("%d%d",&x,&y);
if(find(x)!=find(y))
printf("-1\n");
else
printf("%d\n",query(x,y));
}
return 0;
}

  

LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS

    这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...

  3. 【bzoj4242】水壶 BFS+最小生成树+倍增LCA

    题目描述 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入 ...

  4. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  5. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

  6. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  7. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  8. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  9. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

随机推荐

  1. java12类的无参方法

    package com.jh.test01; public class AutoLion { // 属性: 颜色 黄色 String color = "黄色"; // 函数:跑,叫 ...

  2. Deeplab

    Deeplab系列是谷歌团队的分割网络. DeepLab V1 CNN处理图像分割的两个问题 下采样导致信息丢失 maxpool造成feature map尺寸减小,细节信息丢失. 空间不变性 所谓空间 ...

  3. Spring学习笔记:自动创建Proxy

    为什么需要自动创建Proxy 手动为所有需要代理的类用ProxyFactoryBean创建代理Proxy需要大量的配置. 这样如果需要代理的类很多,配置就很繁琐,而且也不便于xml配置的维护. 因此S ...

  4. Nice to meet you for the first time .Why do I write blog!

    他们说我不修边幅,因为他们没看到我对细节的追求,他们说我技术宅,因为他们看不懂我的悲欢,他们说我无趣,是因为她们不知道,我在让世界变得更有趣,我把误解拿来自黑,我用工作承载兴趣,我是程序员,是用代码编 ...

  5. 记一次kubernetes驱逐踩坑

    最近在公司的线上服务器上发现了一个现象: 将某个node的kubelet短暂的停掉之后,其上的pod马上会被驱逐,这让笔者大吃一惊,印象之中,停掉kubelet后,该node会变为NotReady状态 ...

  6. 学习Sparql

    一 . gstore--一种开源图数据库系统 https://www.docin.com/p-1951514687.html 二 . 使用 SPARQL 查询 RDF 数据 https://www.i ...

  7. k8s系列----索引

    day1:k8s集群准备搭建和相关介绍 day2:k8spod介绍与创建 day3:k8sService介绍及创建 day4:ingress资源和ingress-controller day5:存储卷 ...

  8. [MacOS]Sublime text3 安装(一)

    官网地址 https://www.sublimetext.com/ 直接下载地址(MacOS) https://download.sublimetext.com/Sublime%20Text%20Bu ...

  9. css沉默

    css变色龙实现. ==== css 1 水平居中和垂直居中. 2 css布局方式. 3 你写过UI框架么.

  10. python网络爬虫(二)requests库的基本介绍和使用

    一.requests库的七个重要方法 (1)最常用方法:requests.get(url,params=None,**kwargs)//对应HTTP协议的GET()操作 (请求获得URL位置的资源) ...