hdu - 4990
Read the program below carefully then answer the question.
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf("%d\n",ans);
}
return 0;
}
Input
Multi test cases,each line will contain two integers n and m. Process to end of file.
[Technical Specification]
1<=n, m <= 1000000000
Output
For each case,output an integer,represents the output of above program.
Sample Input
1 10
3 100
Sample Output
1
5
题意 : 优化按照已给的程序
思路 : 用已有的程序跑出前几个答案,找规律, fn = f n-1 + 2 * f n-2 + 1 , 重点还是构造矩阵,带常数项如何构造出矩阵

代码示例 :
struct mat
{
ll a[3][3];
}; ll m; mat mul(mat a, mat b){
mat r;
memset(r.a, 0, sizeof(r.a)); for(int i = 0; i < 3; i++){
for(int k = 0; k < 3; k++){
if (a.a[i][k]){
for(int j = 0; j < 3; j++){
if (b.a[k][j]){
r.a[i][j] += (a.a[i][k]*b.a[k][j])%m;
r.a[i][j] %= m;
}
}
}
}
}
return r;
} mat pow(mat a, ll n){
mat b;
memset(b.a, 0, sizeof(b.a));
b.a[0][0] = b.a[1][1] = b.a[2][2] = 1; while(n){
if (n&1) b = mul(a, b); //
a = mul(a, a);
n >>= 1;
}
return b;
} int main() {
ll n; while(~scanf("%lld%lld", &n, &m)){
mat a;
memset(a.a, 0, sizeof(a.a));
a.a[0][0] = a.a[1][0] = a.a[0][2] = a.a[2][2] = 1;
a.a[0][1] = 2;
if (n == 1) {
printf("%lld\n", 1%m);
}
else if (n == 2){
printf("%lld\n", 2%m);
}
else {
a = pow(a, n-2);
printf("%lld\n", (a.a[0][0]*2%m+a.a[0][1]%m+a.a[0][2]%m)%m);
} } return 0;
}
hdu - 4990的更多相关文章
- HDU - 4990 Reading comprehension 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...
- hdu 4990 Reading comprehension(等比数列法)
题目链接:pid=4990" style="color:rgb(255,153,0); text-decoration:none; font-family:Arial; line- ...
- hdu 4990 Reading comprehension 二分 + 快速幂
Description Read the program below carefully then answer the question. #pragma comment(linker, " ...
- HDU 4990 Ordered Subsequence --数据结构优化DP
题意:给一串数字,问长度为m的严格上升子序列有多少个 解法:首先可以离散化为10000以内,再进行dp,令dp[i][j]为以第i个元素结尾的长度为j的上升子序列的个数, 则有dp[i][j] = S ...
- HDU 4990 Reading comprehension
快速幂 #include<cstdio> #include<cstring> #include<cmath> #include<iostream> #i ...
- Reading comprehension HDU - 4990
Read the program below carefully then answer the question. #pragma comment(linker, "/STACK:1024 ...
- HDU 4990 Reading comprehension(矩阵快速幂)题解
思路: 如图找到推导公式,然后一通乱搞就好了 要开long long,否则红橙作伴 代码: #include<set> #include<cstring> #include&l ...
- HDU 4990 Reading comprehension 简单矩阵快速幂
Problem Description Read the program below carefully then answer the question.#pragma comment(linker ...
- Reading comprehension HDU - 4990 (矩阵快速幂 or 快速幂+等比数列)
;i<=n;i++) { )ans=(ans*+)%m; %m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 ...
- hdu 4990(数学,等比数列求和)
Reading comprehension Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- 2018-8-10-如何入门-C++-AMP-教程
title author date CreateTime categories 如何入门 C++ AMP 教程 lindexi 2018-08-10 19:16:51 +0800 2018-2-13 ...
- @ENABLEWEBSECURITY和@ENABLEWEBMVCSECURITY有什么区别?
@EnableWebSecurity和@EnableWebMvcSecurity有什么区别? @EnableWebSecurity JavaDoc文档: 将此注释添加到@Configuration类中 ...
- H3C DHCP简介
- Vue中的scoped及穿透方法(修改第三方组件局部的样式)
何为scoped? 在vue文件中的style标签上,有一个特殊的属性:scoped.当一个style标签拥有scoped属性时,它的CSS样式就只能作用于当前的组件,也就是说,该样式只能适用于当前组 ...
- linux 一次对一个用户限制存取
单打开设备之外的下一步是使一个用户在多个进程中打开一个设备, 但是一次只允许一个 用户打开设备. 这个解决方案使得容易测试设备, 因为用户一次可从几个进程读写, 但是 假定这个用户负责维护在多次存取中 ...
- 【38.96%】【hdu 1540】Tunnel Warfare
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission ...
- vue-learning:31 - component - 组件间通信的6种方法
vue组件间通信的6种方法 父子组件通信 prop / $emit 嵌套组件 $attrs / $liteners 后代组件通信 provide / inject 组件实例引用 $root / $pa ...
- Team Foundation Server 2015使用教程【10】:团队项目删除
- The Struts dispatcher cannot be found异常的解决方法
系统错误:HTTP Status 500 异常信息:The Struts dispatcher cannot be found. This is usually caused by using St ...
- 查看HBase表在HDFS中的文件结构(转发)
转自:http://greatwqs.iteye.com/blog/1839232