题目

题意简介明了,需要找到一个\(T\),最小化

\[\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor+\sum_{i=1}^na_i\%T
\]

非常显然的\(a_i\%T=a_i-\left \lfloor \frac{a_i}{T} \right \rfloor\times T\)

于是

\[\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor+\sum_{i=1}^na_i-T\times \sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor
\]

即为

\[\sum_{i=1}^na_i-(T-1)\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor
\]

最小化这个柿子只需要最大化\((T-1)\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor\)

考虑一次枚举\(T\),需要快速求出\(\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor\)

注意到\(\left \lfloor \frac{a_i}{T} \right \rfloor\)只会有\(\left \lfloor \frac{\max a_i}{T} \right \rfloor\)种值,即对于\(a_i\in[0,T-1],\left \lfloor \frac{a_i}{T} \right \rfloor=0...a_i\in [kT-T,kT-1],\left \lfloor \frac{a_i}{T} \right \rfloor=k\)

我们直接暴力这\(\left \lfloor \frac{\max a_i}{T} \right \rfloor\)段区间,前缀和算一下这段区间里有多少个\(a_i\)即可

复杂度显然调和级数,视\(n\)与\(\max a_i\)同级,复杂度为\(O(n\log n)\)

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn=1e6+5;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,pre[maxn],T;LL ans,tmp;
inline int calc(int l,int r) {
return (r>T?pre[T]:pre[r])-(l?pre[l-1]:0);
}
int main() {
n=read();
for(re int x,i=1;i<=n;i++) x=read(),ans+=x,T=max(T,x),pre[x]++;
for(re int i=1;i<=T;i++) pre[i]+=pre[i-1];
for(re int i=2;i<=T;++i) {
LL now=0;
for(re int cnt=0,l=0,j=i-1;l<=T;j+=i,l+=i,++cnt)
now+=1ll*calc(l,j)*cnt;
if(1ll*now*(i-1)>tmp) tmp=1ll*now*(i-1);
}
printf("%lld\n",ans-tmp);
return 0;
}

uoj21 【UR #1】缩进优化的更多相关文章

  1. 【uoj#21】[UR #1]缩进优化 数学

    题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...

  2. UOJ_21_【UR #1】缩进优化_数学

    UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...

  3. 【UOJ#21】【UR#1】缩进优化

    我好弱啊,什么题都做不出来QAQ 原题: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现 ...

  4. UOJ#21 【UR #1】缩进优化

    传送门 http://uoj.ac/problem/21 枚举 (调和级数?) $\sum_{i=1}^{n} (a_i / x + a_i \bmod x) =\sum a_i - (\sum_{i ...

  5. uoj21 缩进优化(整除分块,乱搞)

    题目大意: 给定一个长度为\(n\)的序列 让你找一个\(x\),使得\(ans\)尽可能小 其中$$ans=\sum_{i=1}^{n}\lfloor\frac{a_i}{x}\rfloor + \ ...

  6. uoj problem 21 缩进优化

    题目: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现,很多时候自己的程序明明看起来比别 ...

  7. ●UOJ 21 缩进优化

    题链: http://uoj.ac/problem/21 题解: ...技巧题吧 先看看题目让求什么: 令$F(x)=\sum_{i=1}^{n}(\lfloor a[i]/x \rfloor +a[ ...

  8. UOJ 做题记录

    UOJ 做题记录 其实我这么弱> >根本不会做题呢> > #21. [UR #1]缩进优化 其实想想还是一道非常丝播的题目呢> > 直接对于每个缩进长度统计一遍就好 ...

  9. UOJ Round #1 [数论 | DP 排列]

    UOJ Round #1 难度很良心啊! 做出了前两题,第三题看到仙人掌就吓哭了. [UR #1]缩进优化 就是求 \[ \sum_{i=1}^n a_i - (x-1)\sum_{i=1}^n\lf ...

随机推荐

  1. win7 cmd 常用命令

    进入不同的分区  d: 查看之栏目树:tree 查看当前目录下的子目录:dir 切换不同的目录:cd

  2. windows每天定时执行脚本

     windows每天定时执行脚本 这里说的定时器就是Windows下的任务计划,当时遇到的坑正好总结一下,因为Windows10的定时器去执行脚本当时试了好多遍,都是没有成功,后来通过自己的观察发现是 ...

  3. HTTP与HTTPS的区别与联系

    HTTP与HTTPS的区别与联系 HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私信息非常不安全,为了保证这些隐私数据能加密传输,于是网景公司设计了SSL(Secure ...

  4. 2014 mathtype分块列向量输入 PPT动画制作

    1.mathtype分块列向量的输入 http://zhidao.baidu.com/link?url=pV7TazWe-Ld5qgxNcJCQdRaA8ILEgmXRP211F5U0Cst0xNfU ...

  5. js关于if()else{}中的判定条件的认识,各种数据类型转换为Boolean类型的转换规则

    博客搬迁,给你带来的不便敬请谅解! http://www.suanliutudousi.com/2017/09/24/js%E5%85%B3%E4%BA%8Eifelse%E4%B8%AD%E7%9A ...

  6. java-day25

    . 标签学习:         1. 文件标签:构成html最基本的标签             * html:html文档的根标签             * head:头标签.用于指定html文档 ...

  7. 从模块到python文件的两种用法

    01模块的四种形式 模块 就是从逻辑上组织python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名是test.py的话,它的对应模块名就是test) 包 用 ...

  8. 不走弯路,微信小程序的快速入门?

    微信小程序下载注册地址:https://mp.weixin.qq.com/cgi-bin/wx 微信小程序登开发者平台地址(可以查看小程序APPID):https://mp.weixin.qq.com ...

  9. CSS中background的用法

    CSS中  background 是一个很基本的而且比较常用的样式 background : background-color || background-image || background-re ...

  10. css切角效果,折角效果

    html <div class="one">12345</div> <div class="two">abcde</d ...