【题解】LOJ6060 Set(线性基)
【题解】LOJ6060 Set(线性基)
orz gql
设所有数的异或和为\(S\),答案是在\(\max (x_1+S\and x_1)\)的前提下\(\min x_1\)输出\(x_1\)
转换一下就是\(\max (x_2+S\and x_2),s.t. \max x_2\)
考虑先贪心地求出外层\(\max\)
按位贪心,设\(u_i\)为\(S\)第\(i\)位上的\(bit\) ,\(u_i\)是个\(0/1\)变量
- \(u_i=1\)时,对于\(x_2\)这一位我们没有任何要求,因为无论\(x_2\)该位上的取值,外层\(\max\)不变。
- \(u_i=0\)时,对于\(x_2\)这一位我们要求能有\(bit\)就有\(bit\) ,这样可以对答案有\(2\times 2^i\)贡献。
由于满足要求的\(x_2\)有很多,我们现在要找到最大的那种,就直接线性基套进去就好了。具体实现代码带注释,文字太难说明了!
相当于复读gql的代码了
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std; typedef long long ll;
inline ll qr(){
register ll ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
ll data[maxn];
ll base[66];
ll num[66];
ll n,S;
inline void insert(ll x){
for(register int t=63;t;--t)
if(!(S&num[t])&&(x&num[t])){
if(!base[t]) return void(base[t]=x);
x^=base[t];
}
//假如当前元素可以按照条件一的条件插入,就return了,运行下面的代码是条件二
for(register int t=63;t;--t)
if((S&num[t])&&(x&num[t])){
if(!base[t]) return void(base[t]=x);
x^=base[t];
}
}
inline ll top(){
ll ret=0;
//构造满足条件一二
for(register int t=63;t;--t)
if(!(S&num[t])&&!(ret&num[t])) ret^=base[t];
//构造x最大
for(register int t=63;t;--t)
if( (S&num[t])&&!(ret&num[t])) ret^=base[t];
return ret;
}
int main(){
num[1]=1;
for(register int t=2;t<=63;++t) num[t]=num[t-1]<<1;
n=qr();
for(register int t=1;t<=n;++t) data[t]=qr(),S^=data[t];
for(register int t=1;t<=n;++t) insert(data[t]);
cout<<(top()^S)<<endl;
return 0;
}
【题解】LOJ6060 Set(线性基)的更多相关文章
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- 【BZOJ4184】shallot 线段树+vector+线性基
[BZOJ4184]shallot Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从 ...
- 【线性基】51nod1312 最大异或和&LOJ114 k大异或和
1312 最大异或和 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 有一个正整数数组S,S中有N个元素,这些元素分别是S[0] ...
- 【LOJ6060】【2017 山东一轮集训 Day1 / SDWC2018 Day1】Set 线性基
题目大意 给出 \(n\) 个非负整数,将数划分成两个集合,记为一号集合和二号集合.\(x_1\) 为一号集合中所有数的异或和,\(x_2\) 为二号集合中所有数的异或和.在最大化 \(x_1 + x ...
- 【题解】 Codeforces 662A Gambling Nim (线性基)
662A,戳我戳我 Solution: 我们先取\(ans=a[1] \bigoplus a[2] \bigoplus ... \bigoplus a[n]\),然后我们定义\(c[i]=a[i] \ ...
- 【题解】kth异或和/魔改版线性基
[题解]魔改版线性基 魔改版线性基解决此类问题. 联系线性空间的性质,我们直接可以构造出这样的基: \[ 100000 \\ 010000 \\ 000010 \\ 000001 \] 使得每个基的最 ...
- 【题解】P4570 [BJWC2011]元素 - 线性基 - 贪心
P4570 [BJWC2011]元素 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 给你 \(n\) 个二元组 \( ...
- Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)
Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...
- 题解——洛谷P3812【模板】线性基
学了下线性基 使用好像并不复杂 打了板子 但是要注意位运算优先级 #include <cstdio> #include <algorithm> #include <cst ...
随机推荐
- iptables 操作规则
iptables -nL查看本机关于iptables的设置情况,默认查看的是-t filter,可以指定-t nat iptables-save > iptables.rule会保存当前的防火墙 ...
- phpstorm 左边的文件列表没用了 怎么弄出来
ALT+1ALT+数字键,是各种工具栏的显示与隐藏快捷键,你可以挨个试一下.
- CSS检测窗口大小显示和隐藏内容
代码不多 用css写的话简单一点 @media (max-width: 1024px) { #hidden { display: none; } } max-width 是要检测的宽度
- hdu 1595 find the longest of the shortest(迪杰斯特拉,减去一条边,求最大最短路)
find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others) Memory Limit: 32768/32768 ...
- H3C 网络层
- 2018-8-10-win10-uwp-后台获取资源
title author date CreateTime categories win10 uwp 后台获取资源 lindexi 2018-08-10 19:17:19 +0800 2018-2-13 ...
- Python 科学计算库numpy
Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数 # 多维数组ndarray import numpy as np ar ...
- [转]ASP.NET WebApi OWIN 实现 OAuth 2.0
OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和密码提供给第三方应用. OAuth 允许用户提供一个令牌, ...
- 1625 - Color Length——[动态规划]
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- H3C 递归查询