对于排列 \(p\),它的单调栈 \(f\) 定义为,\(f_i\) 是以 \(p_i\) 结尾的最长上升子序列的长度

先给定 \(f\) 中一些位置的值,求字典序最小的 \(p\) 使得它满足这些值

Solution

显然 \(f[1]=1\),考虑所有满足 \(f[x]=1\) 的位置 \(b_1,\dots,b_k\),一定有 \(p_{b_1}>p_{b_2}>\dots >p_{b_k}\)

由于 \(b_1=1\),我们要最小化 \(p_1\),所以填入 \(p_{b_i}=k-i+1\)

然后考虑所有 \(f[x]=2\) 的数,同理操作(注意第一个数仍然为最小),填入值加一个偏移即可

最后,对于 \(f\) 值没有给出的那些数,从左到右从小到大填入即可

#include <bits/stdc++.h>
using namespace std; const int N = 105;
int n,t,s,f[N],p[N]; signed main() {
ios::sync_with_stdio(false);
cin>>t;
while(t--) {
cin>>n;
for(int i=1;i<=n;i++) cin>>f[i];
int sum=0;
memset(p,0,sizeof p);
for(int i=1;i<=n;i++) {
stack<int> v;
for(int j=1;j<=n;j++) if(p[j]==0) {
f[j]=i;break;
}
for(int j=1;j<=n;j++) if(f[j]==i) v.push(j);
while(v.size()) p[v.top()]=++sum, v.pop();
}
for(int i=1;i<=n;i++) if(p[i]==0) p[i]=++sum;
for(int i=1;i<=n;i++) cout<<p[i]<<(n==i?"":" ");
cout<<endl;
}
}

Wannafly Winter Camp 2020 Day 6G 单调栈 - 贪心的更多相关文章

  1. Wannafly Winter Camp 2020 Day 7E 上升下降子序列 - 数学

    神奇公式 #include <bits/stdc++.h> using namespace std; #define int long long int n,mod,c[205][205] ...

  2. Wannafly Winter Camp 2020 Day 7D 方阵的行列式 - 数学

    于是去弄了个板子来 #include <bits/stdc++.h> using namespace std; #define int long long const int mod = ...

  3. Wannafly Winter Camp 2020 Day 7A 序列 - 树状数组

    给定一个全排列,对于它的每一个子序列 \(s[1..p]\),对于每一个 \(i \in [1,p-1]\),给 \(s[i],s[i+1]\) 间的每一个值对应的桶 \(+1\),求最终每个桶的值. ...

  4. Wannafly Winter Camp 2020 Day 6J K重排列 - dp

    求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp ...

  5. Wannafly Winter Camp 2020 Day 6I 变大! - dp

    给定一个序列,可以执行 \(k\) 次操作,每次选择连续的三个位置,将他们都变成他们的最大值,最大化 \(\sum a_i\) 需要对每一个 \(k=i\) 输出答案 \(n \leq 50, a_i ...

  6. Wannafly Winter Camp 2020 Day 6H 异或询问 - 二分

    给定一个长 \(n\) 的序列 \(a_1,\dots,a_n\),定义 \(f(x)\) 为有多少个 \(a_i \leq x\) 有 \(q\) 次询问,每次给定 \(l,r,x\),求 \(\s ...

  7. Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学

    给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...

  8. Wannafly Winter Camp 2020 Day 6C 酒馆战棋 - 贪心

    你方有 \(n\) 个人,攻击力和血量都是 \(1\).对方有 \(a\) 个普通人, \(b\) 个只有盾的,\(c\) 个只有嘲讽的,\(d\) 个有盾又有嘲讽的,他们的攻击力和血量都是无穷大.有 ...

  9. Wannafly Winter Camp 2020 Day 6A Convolution - NTT

    求 \(\sum_{i=1}^n \sum_{j=1}^n 2^{a_ia_j}\) Solution 化简一下 \[ 2^{a_ia_j} = p^{(a_i+a_j)^2-a_i^2-a_j^2} ...

随机推荐

  1. CCF_ 201409-2_画图

    将一个数组比作画板,有颜色的位置标1,统计即可. #include<cstdio> #include<iostream> #define NUM 100 using names ...

  2. 对权值线段树剪枝的误解--以HDU6703为例

    引子 对hdu6703,首先将问题转化为"询问一个排列中大于等于k的值里,下标超过r的最小权值是多少" 我们采用官方题解中的做法:权值线段树+剪枝 对(a[i],i)建线段树,查询 ...

  3. C++中STL库函数的基本运用

    学了这么长时间的STL库,现在我觉得是有必要对过去的题目和所遇到的问题做一下整理了,以便于之后更好的展开练习: 一. 为什么要用STL库? 1.简单粗暴(省事). 2.便于解决复杂的问题(在贪心题目中 ...

  4. golang 运算符

    /* 算术运算符 : + - * / % ++ -- 关系运算符 : == != > < >= <= 逻辑运算符 : && || ! 赋值运算符 : = += ...

  5. javascript get set读取器

    class Person{ constructor(name, id){ let _name = name, _id = id; Object.defineProperties(this, { nam ...

  6. qt creator源码全方面分析(2-10-4)

    目录 Plugin Life Cycle Plugin Life Cycle 为了能够编写Qt Creator插件,您必须了解启动或关闭Qt Creator时,插件管理器所采取的步骤. 本节详细描述插 ...

  7. 兄弟连 企业shell笔试题 16-31

    企业实践题16:企业案例:写网络服务独立进程模式下rsync的系统启动脚本 例如:/etc/init.d/rsyncd{start|stop|restart} .要求:1.要使用系统函数库技巧.2.要 ...

  8. 一起了解 .Net Foundation 项目 No.7

    .Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. Entity Framew ...

  9. BIO&NIO

    在BIO中只有一个核心对象--Stream,它是单向的数据传输通道,即每个Stream要么是输入要么是输出的,不可兼得.开发人员是面向Stream进行编程的. 在NIO中有三个核心对象--Seleto ...

  10. git系列之---将本地的项目添加到码云仓库

    1.前情: 本地写的 Demo 传到码云上面进行维护. 2.操作步骤: git init   将本地文件初始化为git 仓库,文件件会多一个 .git 文件夹[版本库]: git add .   或者 ...