description

给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环。

你需要找出所有边,满足这些边恰好存在于一个简单环中。一个环被称为简单环,当且仅当它包含的所有点都只在这个环中被经过了一次。

注意到这些边可能有很多条,你只需要输出他们编号的异或和即可。


analysis

  • 然而复习了一波\(tarjan\),其实这个简单环就是求点双

  • 求出每个点双,判断点双里的边数是否等于点双点数

  • 这个不能暴力求,方法就是记录每个点有多少条返祖边、返祖边的异或和

  • 因为这些返祖边指向的点和该点本身肯定在同一个点双中

  • 感觉\(tarjan\)这种东西还是记下好一点,不过跑得好慢很奇怪


code

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#define MAXN 1000005
#define MAXM 2000005
#define ll int
#define reg register ll
#define max(x,y) ((x>y)?(x):(y))
#define min(x,y) ((x<y)?(x):(y))
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
#define rep(i,a) for (reg i=last[a];i;i=next[i]) using namespace std; ll last[MAXM],next[MAXM],tov[MAXM],id[MAXM];
ll dfn[MAXN],low[MAXN],stack[MAXN],where[MAXN],num[MAXN],xorval[MAXN];
ll n,m,tot,top,ans,sum,root=1,size;
bool bz[MAXN],cut[MAXN];
vector<ll>v[MAXN]; inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline void link(ll x,ll y,ll z){next[++tot]=last[x],last[x]=tot,tov[tot]=y,id[tot]=z;}
inline void tarjan(ll x)
{
dfn[x]=low[x]=++tot,bz[x]=1,stack[++top]=x;ll flag=0;
rep(i,x)if (!dfn[tov[i]])
{
tarjan(tov[i]),low[x]=min(low[x],low[tov[i]]);
if (low[tov[i]]>=dfn[x])
{
++flag,++sum;ll tmp,total=0,xorsum=0;
if (x!=root || flag>1)cut[x]=1;
do
{
tmp=stack[top--],v[sum].push_back(tmp),total+=num[tmp],xorsum^=xorval[tmp];
}
while (tmp!=tov[i]);
v[sum].push_back(x);
if (total==v[sum].size())ans^=xorsum;
}
}
else
{
if (dfn[tov[i]]>dfn[x])continue;
++num[x],xorval[x]^=id[i];
low[x]=min(low[x],dfn[tov[i]]);
}
}
int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
n=read(),m=read();
fo(i,1,m)
{
ll x=read(),y=read();
link(x,y,i),link(y,x,i);
}
tot=0,tarjan(1);
printf("%d\n",ans);
return 0;
}

【JZOJ6409】困难的图论的更多相关文章

  1. 6409. 【NOIP2019模拟11.06】困难的图论(Tarjan求点双)

    题目描述 Description 给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环. 你需要找出所有边,满足这些边恰好存在于一个简单环中.一个环被称为简单环,当且仅当它包含的所有点都只在 ...

  2. 220501 T1 困难的图论 (tarjan 点双)

    求满足题目要求的简单环,做出图中所有的点双,用vector存储点双中的边,如果该点双满足点数=边数,就是我们想要的,求边的异或和即可:如果该点双点数小于边数,说明有不只一个环覆盖,不满足题意. 1 # ...

  3. LeetCode刷题总结-动态规划篇

    本文总结LeetCode上有动态规划的算法题,推荐刷题总数为54道.具体考点分析如下图: 1.中心扩展法 题号:132. 分割回文串 II,难度困难 2.背包问题 题号:140. 单词拆分 II,难度 ...

  4. Cocos2d-x 地图步行实现1:图论Dijkstra算法

    下一节<Cocos2d-x 地图行走的实现2:SPFA算法>: http://blog.csdn.net/stevenkylelee/article/details/38440663 本文 ...

  5. QBXT Day 5图论相关

    图论是NOIP的一个非常重要的考点,换句话说,没有图论,NOIP的考纲就得少一大半(虽然很NOIP没有考纲) 图论这玩意吧,和数论一样是非常变态的东西,知识点又多又杂,但是好在一个事,他比较直观比较好 ...

  6. lesson1-图的概念和图论模型

    说明: 图论专题开设的目的主要是作为本学期复习巩固和分享自己对于图论的理解,主要参考的是老师的PPT.应老师要求,不能共享文件,抱歉! 参考书目:[1] J.A. Bondy,  U.S.R. Mur ...

  7. 4专题总结-图论和DFS、BFS

    1图论: 1.1  133. Clone Graph https://leetcode.com/problems/clone-graph/#/description 思路:这题可以对照拷贝随机链表那道 ...

  8. [leetcode] 题型整理之图论

    图论的常见题目有两类,一类是求两点间最短距离,另一类是拓扑排序,两种写起来都很烦. 求最短路径: 127. Word Ladder Given two words (beginWord and end ...

  9. winform中dataGridView单元格根据值设置新值,彻底解决绑定后数据类型转换的困难

    // winform中dataGridView单元格在数据绑定后,数据类型更改困难,只能迂回实现.有时候需要将数字变换为不同的文字描述,就会出现int32到string类型转换的异常,借助CellFo ...

随机推荐

  1. MHA-Atlas-MySQL高可用(下)

    MHA-Atlas-MySQL高可用(下) 链接:https://pan.baidu.com/s/17Av92KQnJ81Gc0EmxSO7gA 提取码:a8mq 复制这段内容后打开百度网盘手机App ...

  2. Coin Slider

    题目描述 You are playing a coin puzzle. The rule of this puzzle is as follows: There are N coins on a ta ...

  3. (PASS)break 和 continue 的区别

    1  break;  while循环中,break是用于永久终止循环.即不执行本次循环中break后面的语句,直接跳出循环. 终止,跳出,结束循环(可以作用在任何地方).也常与switch分支结构合用 ...

  4. java多线程面试题选择题大全含答案

    v java多线程面试题选择题大全含答案 java多线程面试题选择题大全含答案 1.下面程序的运行结果()(选择一项)public static void main(String[] args) {T ...

  5. java多线程面试题_线程并发面试题

    1.什么是线程?线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成一个 ...

  6. HTTP/2的优先级

    前言 记得HTTP/3即将标准化了.今日早读文章由@smallbonelu翻译授权分享. @smallbonelu,一枚爱好跑步的前端工程师 正文从这开始-- 以正确的顺序请求页面资源对于快速的用户体 ...

  7. war包里面文件的修改方式

    1  将war包移动到一个干净的路径下,使用   jar xvf ROOT.war    命令将war进行解压操作 2  修改相应的文件内容,修改想要修改的文件,比如web.xml 3 使用    j ...

  8. png图标任意赋色

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. c++之初始化列表

    #include<iostream> using namespace std; class Person{ public: int m_a; int m_b; int m_c; Perso ...

  10. go类c语法

    go类c语法 一般来说,如果一门语言具有类c语法,意味着当你习惯使用其他类c语言例如c.c++.java.javascript和c#,然后你就会发现go语言和它们也类似,至少表面上是.例如,使用&am ...