洛谷P3645 [APIO2015]雅加达的摩天楼
题目描述
印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N − 1。除了这 NN 座摩天楼外,雅加达市没有其他摩天楼。
有 M 只叫做 “doge” 的神秘生物在雅加达市居住,它们的编号依次是 0 到 M − 1。编号为 i 的 doge 最初居住于编号为 Bi 的摩天楼。每只 doge 都有一种神秘的力量,使它们能够在摩天楼之间跳跃,编号为 i 的 doge 的跳跃能力为 Pi (Pi>0)。
在一次跳跃中,位于摩天楼 b 而跳跃能力为 p 的 doge 可以跳跃到编号为 b − p (如果 b − p < N)或 b+p(如果0≤b+p<N)的摩天楼。
编号为 0 的 doge 是所有 doge 的首领,它有一条紧急的消息要尽快传送给编
号为 1 的 doge。任何一个收到消息的 doge 有以下两个选择:
跳跃到其他摩天楼上;
将消息传递给它当前所在的摩天楼上的其他 doge。
请帮助 doge 们计算将消息从 0 号 doge 传递到 1 号 doge 所需要的最少总跳跃步数,或者告诉它们消息永远不可能传递到 1 号 doge。
输入输出格式
输入格式:
输入的第一行包含两个整数 N 和 M。
接下来 M 行,每行包含两个整数 Bi 和 Pi。
输出格式:
输出一行,表示所需要的最少步数。如果消息永远无法传递到 1 号 doge,输出 −1。
输入输出样例
5 3
0 2
1 1
4 1
5
说明
【样例解释】
下面是一种步数为 5 的解决方案:
0 号 doge 跳跃到 2 号摩天楼,再跳跃到 4 号摩天楼(2 步)。
0 号 doge 将消息传递给 2 号 doge。
2 号 doge 跳跃到 3 号摩天楼,接着跳跃到 2 号摩天楼,再跳跃到 1 号摩天楼(3 步)。
2 号 doge 将消息传递给 1 号 doge。
【数据范围】
所有数据都保证 0≤Bi<N。
子任务 1 (10 分)1≤N≤10
1≤Pi≤10
2≤M≤3
子任务 2 (12 分)1≤N≤100
1≤Pi≤100
2≤M≤2000
子任务 3 (14 分)1≤N≤2000
1≤P≤2000
2≤M≤2000
子任务 4 (21 分)1≤N≤2000
1≤Pi≤2000
2≤M≤30000
子任务 5 (43 分)1≤N≤30000
1≤Pi≤30000
2≤M≤30000
题解:
哇哇哇这道题A掉真不容易
这道题看到就想着建图,但是直接建肯定是不行的。
为啥不行呢?原来,对于某一个doge的p值,我们的建图方法是这样滴:
如果p值较大的话,那还好办,因为不会连出去多少边
但是,如果p值小的话,那么每一个点可能会往外连好多个边,而且可能有重复的!
复杂度可能接近 n² 哦
那么,如何改进建边方法?
老师教我们做分层图(似乎也叫分块?并不太清楚……)
对于p值较大的,比如大于sqrt(n)的,我们还直接建边
但是对于p值较小的,我们就对于不同的p值分别建图,然后每两个可一步到达的“相邻”点间都连正反两条边
就像这样:
p=1层的图:
p=2层的图:
(画图好累……)
好了大概层里建图就是这样
可是不能光在一个层里面跑啊,得在不同层间跑
那么不同层间的边怎么连?
不同层间的边其实就相当于一栋楼中有些可跳距离不同的doge,那对于每一个doge都把同一个点不同层的点指向该点(这样说好抽象啊……看代码应该好理解些)
这样建图复杂度是nlogn的
这样图建完后跑最短路就可以了
我一开始用dijkstra堆优化,但是始终T一个点。后来改成SPFA又修改了许多耗时的地方才A掉……95分了好长时间……
我做这道题时中间有一段时间一直65分,因为我在建图时有一块儿想错了
我把p值较大的暴力建图时是按照p值较小的建图方法建的(如上2图)
但是这样是有问题的
两者的区别不单是前者边少后者边多,更是前者只能从一个点出发去其他点,而后者可从每一个点出发去其他点!
虽然感觉上求两点之间距离这两种方法是一样的,但当有其他点、边或其他操作插进来后就很不一样了
比如前一个图,第三个点与第四个点是无法互相到达的,而在后面图中就可以
下次写题是一定要注意这一点!要想清楚了!
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#define INF 1000000007
using namespace std; const int MAXN = ;
struct node{
int v,len,lev;
node *next;
}pool[*MAXN],*h[][MAXN];
int cnt; int read(){
int x=,f=;
char ch=getchar();
while(ch>'' || ch<'') ch=getchar();
while(''<=ch && ch<='') x=x*+ch-'',ch=getchar();
return x;
} void addedge(int u,int lu,int v,int lv,int len){
node *p=&pool[++cnt];
p->v=v;p->len=len;p->lev=lv;
p->next=h[lu][u];h[lu][u]=p;
} int n,m,sn;
int b[MAXN],p[MAXN],vis[]; int d[][MAXN],use[][MAXN];
struct qqq{
int num,lev;
};
queue<qqq> que1;
void spfa(int S,int lS,int T){
int u,v,l;
qqq newq,now;
for(int i=;i<sn;i++)
for(int j=;j<n;j++) d[i][j]=INF;
while(!que1.empty()) que1.pop();
d[lS][S]=;
newq.num=S;newq.lev=lS;
que1.push(newq);
while(!que1.empty()){
now=que1.front();que1.pop();
u=now.num;l=now.lev;
for(node *p=h[l][u];p;p=p->next)
{
v=p->v;
if(d[p->lev][v]>d[l][u]+p->len){
d[p->lev][v]=d[l][u]+p->len;
if(use[p->lev][v]) continue;
newq.num=v;newq.lev=p->lev;
que1.push(newq);
use[p->lev][v]=;
}
}
use[l][u]=;
}
} int main()
{
int i,j,l2,S,T,lS;
n=read();m=read();
for(i=;i<m;i++) b[i]=read(),p[i]=read();
sn=min((int)sqrt(n),);
S=b[];T=b[];
if(p[]<sn) lS=p[];else lS=; //addedge
for(i=;i<m;i++){
if(p[i]>=sn){
vis[]=;
for(j=b[i]%p[i];j<n;j+=p[i]){
if(j==b[i]) continue;
addedge(b[i],,j,,abs(j-b[i])/p[i]);
}
}
else vis[p[i]]=;
}
for(i=;i<sn;i++)
if(vis[i]){
for(j=;j+i<n;j++){
addedge(j,i,j+i,i,);
addedge(j+i,i,j,i,);
}
}
//level
for(i=;i<m;i++){
if(p[i]<sn) l2=p[i];
else l2=;
for(j=;j<sn;j++)
if(j!=l2 && vis[j]){
addedge(b[i],j,b[i],l2,);
}
} //spfa
spfa(S,lS,T);
int ans=INF;
for(i=;i<sn;i++) ans=min(ans,d[i][T]);
if(ans==INF) printf("-1\n");
else printf("%d\n",ans); return ;
}
洛谷P3645 [APIO2015]雅加达的摩天楼的更多相关文章
- 洛谷P3645 [APIO2015]雅加达的摩天楼(最短路+分块)
传送门 这最短路的建图怎么和网络流一样玄学…… 一个最朴素的想法是从每一个点向它能到达的所有点连边,边权为跳的次数,然后跑最短路(然而边数是$O(n^2)$除非自创复杂度比spfa和dijkstra还 ...
- 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路
正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...
- 洛咕 P3645 [APIO2015]雅加达的摩天楼
暴力连边可以每个bi向i+kdi连边权是k的边. 考虑这样的优化: 然后发现显然是不行的,因为可能还没有走到一个dog的建筑物就走了这个dog的边. 然后就有一个很妙的方法--建一个新的图,和原图分开 ...
- 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)
[题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...
- luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治
LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...
- luogu P3645 [APIO2015]雅加达的摩天楼
luogu 暴力? 暴力! 这个题有点像最短路,所以设\(f_{i,j}\)表示在\(i\)号楼,当前\(doge\)跳跃能力为\(j\)的最短步数,转移要么跳一步到\(f_{i+j,j}\)和\(f ...
- bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图
[Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 644 Solved: 238[Submit][Status][D ...
- 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路
[BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...
- BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路
4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 464 Solved: 164[Submit][Sta ...
随机推荐
- ioctl 命令的实现
ioctl 的 scull 实现只传递设备的配置参数, 并且象下面这样容易: switch(cmd) { case SCULL_IOCRESET: scull_quantum = SCULL_QUAN ...
- vue-learning:8-template-v-on-and-modifier
绑定元素事件的指令 v-on 及事件和修饰符 目录 对比原生事件绑定.jQuery事件绑定 Vue事件绑定 Vue绑定事件中获取事件对象event 事件修饰符 事件行为修饰符: stop / prev ...
- VisualStudio 2019 新特性
很多小伙伴都好奇 VisualStudio 2019 有哪些功能,下面让我介绍一些好玩的特性 在安装完成之后会看到创新的欢迎界面,这个欢迎界面支持输入关键字搜项目,同时支持选择语言平台 很多小伙伴都说 ...
- SQL常见命令
SQLite常见命令:https://www.cnblogs.com/senior-engineer/p/7028972.html
- 使用Pandas加载数据
1.dataframe对象简述: dataframe为pandas中一种有行列索引的二维数据结构,可以看成在普通二维结构上加上行列id标记 示例为创建一个2X3的dataframe: import s ...
- Dubbo-本地测试直连
一.服务提供方 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http: ...
- umask 设置
背景: 有时候需要在linux上从其他人的目录里copy文件过来. 最近遇上的事情很麻烦,就是copy的时候发现很多文件copy不过来,copy一个文件夹时,当前文件把权限修改了,结果子目录的中的还没 ...
- 记一次线上 OOM 和性能优化
大家好,我是鸭血粉丝(大家会亲切的喊我 「阿粉」),是一位喜欢吃鸭血粉丝的程序员,回想起之前线上出现 OOM 的场景,毕竟当时是第一次遇到这么 紧脏 的大事,要好好记录下来. 1 事情回顾 在某次周五 ...
- Kerrigan:配置中心管理UI的实现思路和技术细节
去年写过一篇文章『中小团队落地配置中心详解』,介绍了我们借助etcd+confd实现的配置中心方案,这是一个对运维友好,与开发解耦的极佳方案,经过了一年多的实践也确实帮我们解决了配置文件无版本.难回滚 ...
- html页脚固定在底部的方法
<style type="text/css"> html { height: 100%; } body { height: 100%; margin: 0; paddi ...