Description

要求在平面直角坐标系下维护两个操作:

1.在平面上加入一条线段。记第 \(i\) 条被插入的线段的标号为 \(i\)

2.给定一个数 \(k\) ,询问与直线 \(x = k\) 相交的线段中,交点最靠上的线段的编号。

Input

第一行一个整数 \(n\),表示共 \(n\) 个操作

接下来 \(n\) 行,每行第一个数为 \(0\) 或 \(1\)

若该数为 \(0\),则后面跟着一个正整数 \(k\),表示询问与直线 \(x = ((k + lastans – 1) \% 39989+1)\) 相交的线段中交点(包括在端点相交的情形)最靠上的线段的编号,其中 \(\%\) 表示取余。若某条线段为直线的一部分,则视作直线与线段交于该线段 \(y\) 坐标最大处。若有多条线段符合要求,输出编号最小的线段的编号

若该数为 \(1\),则后面跟着四个正整数 \(x0\), \(y0\), \(x1\), \(y1\),表示插入一条两个端点为 \(((x0+lastans-1) \% 39989+1\), \((y0+lastans-1) \%10^9+1)\) 和 \(((x1+lastans-1) \% 39989+1\) , \((y1+lastans-1) \%10^9+1)\) 的线段

其中 $lastans $ 为上一次询问的答案。初始时 \(lastans=0\)

Output

对于每个 \(0\) 操作,输出一行,包含一个正整数,表示交点最靠上的线段的编号。若不存在与直线相交的线段,答案为 \(0\)

Sample Input

6

1 8 5 10 8

1 6 7 2 6

0 2

0 9

1 4 7 6 7

0 5

Sample Output

2

0

3

HINT

对于 \(30\%\) 的数据,\(n \leq 1000\)

对于 \(100\%\) 的数据,\(1 \leq n \leq 10^5, 1 \leq k, x0, x1 \leq 39989, 1 \leq y0 , y1 \leq 10^9\)


题解

李超线段树模板题。

推荐一篇好的 \(blog\) : https://blog.csdn.net/flere825/article/details/76283734

很巧妙的思想。

关键点就是引入区间“最优势线段” & 动态维护它,保证对每一个位置,答案一定在包含这个位置的区间的“最优势线段”中。


代码

注意坑点!!!!!

\(y\) 的模数为 \(10^9\)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> #define eps 1e-9
#define P 39989 using namespace std; int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
} const int N = 100005;
typedef double db; int tot;
db K[N],B[N];
struct node{
node *ch[2];
int id;
}pool[P*2],*root;
int cnt;
void build(node *p,int l,int r){
p->id=0;
if(l==r) return;
int mid=(l+r)>>1;
build(p->ch[0]=&pool[++cnt],l,mid);
build(p->ch[1]=&pool[++cnt],mid+1,r);
}
inline db cal(int x,int c) { return K[x]*c+B[x]; }
bool better(int x,int y,int c){
if(x==0) return false;
if(y==0) return true;
db cx=cal(x,c),cy=cal(y,c);
if(fabs(cx-cy)<eps) return x<y;
return cx>cy;
}
void insert(node *p,int l,int r,int L,int R,int c){
if(l==L && r==R){
int mid=(l+r)>>1;
if(better(c,p->id,mid)) swap(p->id,c);
int tl=better(p->id,c,l),tr=better(p->id,c,r);
if(!c || l==r || (tl && tr)) return;
if(tl) insert(p->ch[1],mid+1,r,mid+1,r,c);
else insert(p->ch[0],l,mid,l,mid,c);
return;
}
int mid=(l+r)>>1;
if(R<=mid) insert(p->ch[0],l,mid,L,R,c);
else if(L>mid) insert(p->ch[1],mid+1,r,L,R,c);
else {
insert(p->ch[0],l,mid,L,mid,c);
insert(p->ch[1],mid+1,r,mid+1,R,c);
}
}
int ans;
void query(node *p,int l,int r,int c){
ans = better(p->id,ans,c) ? p->id : ans ;
if(l==r) return;
int mid=(l+r)>>1;
if(c<=mid) query(p->ch[0],l,mid,c);
else query(p->ch[1],mid+1,r,c);
} int main()
{
int n,opt,lastans=0,k,x0,y0,x1,y1;
n=read(); root=&pool[++cnt];
build(root,1,P); while(n--){
opt=read();
if(opt==0){
k=(read()+lastans-1)%P+1;
ans=0;
query(root,1,P,k);
lastans=ans;
printf("%d\n",lastans);
}
else{
x0=(read()+lastans-1)%P+1; y0=(read()+lastans-1)%1000000000+1;
x1=(read()+lastans-1)%P+1; y1=(read()+lastans-1)%1000000000+1;
if(x0>x1) swap(x0,x1),swap(y0,y1);
tot++;
K[tot]=1.0*(y1-y0)/(x1-x0);
B[tot]=y0-K[tot]*x0;
insert(root,1,P,x0,x1,tot);
}
} return 0;
}

[洛谷P4097] [HEOI2013] Segment的更多相关文章

  1. 洛谷 P4097 [HEOI2013]Segment 解题报告

    P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...

  2. 2018.07.23 洛谷P4097 [HEOI2013]Segment(李超线段树)

    传送门 给出一个二维平面,给出若干根线段,求出x" role="presentation" style="position: relative;"&g ...

  3. 洛谷P4097 [HEOI2013]Segment(李超线段树)

    题面 传送门 题解 调得咱自闭了-- 不难发现这就是个李超线段树,不过因为这里加入的是线段而不是直线,所以得把线段在线段树上对应区间内拆开之后再执行李超线段树的操作,那么复杂度就是\(O(n\log^ ...

  4. 【洛谷P4097】Segment 李超线段树

    题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...

  5. 洛谷 P4100 [HEOI2013]钙铁锌硒维生素 解题报告

    P4100 [HEOI2013]钙铁锌硒维生素 题目描述 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加 宇宙比赛的饮食. 众所周知,前往宇宙的某个星球,通常要花费好长好长的时间, ...

  6. P4097 [HEOI2013]Segment(李超树)

    链接 https://www.luogu.org/problemnew/show/P4097 https://www.lydsy.com/JudgeOnline/problem.php?id=3165 ...

  7. 【题解】Luogu P4097 [HEOI2013]Segment

    原题传送门 这珂以说是李超线段树的模板题 按着题意写就行了,时间复杂度为\(O(n\log^2n)\) #include <bits/stdc++.h> #define N 40005 # ...

  8. Luogu P4097 [HEOI2013]Segment 李超线段树

    题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...

  9. 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)

    思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...

随机推荐

  1. JS的防抖与节流学习笔记

    防抖(debounce):当持续触发事件时,在一定的时间段内,只有最后一次触发的事件才会执行. 例: function debounce(fn, wait) { var timer = null; r ...

  2. springBoot中使用使用junit测试文件上传,以及文件下载接口编写

    本篇文章将介绍如何使junit在springBoot中测试文件的上传,首先先阅读如何在springBoot中进行接口测试. 文件上传操作测试代码 import org.junit.Before; im ...

  3. es6笔记 day3---对象简介语法以及对象新增

    以前的老写法↓ 新写法来了↓ 提示:千万不要手贱,在里面去用箭头函数!!! -------------------------------------------------------------- ...

  4. 【12.78%】【codeforces 677D】Vanya and Treasure

    time limit per test1.5 seconds memory limit per test256 megabytes inputstandard input outputstandard ...

  5. CSS一行显示,显示不下的用省略号显示

    CSS一行显示,显示不下的用省略号显示 .abc{ white-space: nowrap; text-overflow: ellipsis; overflow: hidden; } 复制上面代码即可 ...

  6. 浮点数NaN和INF(#IND, #INF)

    NaN&INF定义在一些情况会出现无效的浮点数,例如除0,例如负数求平方根等,像这类情况,获取到的浮点数的值是无效的. NaN 即 Not a Number         非数字 INF  ...

  7. STM32与STM8操作寄存器的区别

    在STM8中,由于STM8寄存器较少,在头文件中定义寄存器的时候不用采取任何形式的封装,所以操作寄存器的时候直接可以用如下方式处理:PB_DDR |=0x20; 但是在STM32中,由于其寄存器实在太 ...

  8. xcode无线调试

    前言: xcode9 以上才会有无线调试这个功能,换了一个type-c口的mac,公司的新电脑,但是公司不给配转接口,到某东看了一下,type-c口同时可以转化usb和VGA的要198,官网差不多50 ...

  9. ELK学习实验002:Elasticsearch介绍及单机安装

    一 简介 ElasticSearch是一个基于Luncene的搜索服务器.它提供了一个分布式多用户能力全文搜索引擎,基于RESTful web接口,ElsticSearch使用Java开发的,并作为A ...

  10. 使用Selenium对网页元素进行定位的诸种方法

    使用Selenium进行自动化操作,首先要做的就是通过webdriver的get()方法打开一个URL链接. 在打开链接,完成页面加载之后,就可以通过Selenium提供的接口,在页面上进行各种操作了 ...