[洛谷P4097] [HEOI2013] Segment
Description
要求在平面直角坐标系下维护两个操作:
1.在平面上加入一条线段。记第 \(i\) 条被插入的线段的标号为 \(i\)
2.给定一个数 \(k\) ,询问与直线 \(x = k\) 相交的线段中,交点最靠上的线段的编号。
Input
第一行一个整数 \(n\),表示共 \(n\) 个操作
接下来 \(n\) 行,每行第一个数为 \(0\) 或 \(1\)
若该数为 \(0\),则后面跟着一个正整数 \(k\),表示询问与直线 \(x = ((k + lastans – 1) \% 39989+1)\) 相交的线段中交点(包括在端点相交的情形)最靠上的线段的编号,其中 \(\%\) 表示取余。若某条线段为直线的一部分,则视作直线与线段交于该线段 \(y\) 坐标最大处。若有多条线段符合要求,输出编号最小的线段的编号
若该数为 \(1\),则后面跟着四个正整数 \(x0\), \(y0\), \(x1\), \(y1\),表示插入一条两个端点为 \(((x0+lastans-1) \% 39989+1\), \((y0+lastans-1) \%10^9+1)\) 和 \(((x1+lastans-1) \% 39989+1\) , \((y1+lastans-1) \%10^9+1)\) 的线段
其中 $lastans $ 为上一次询问的答案。初始时 \(lastans=0\)
Output
对于每个 \(0\) 操作,输出一行,包含一个正整数,表示交点最靠上的线段的编号。若不存在与直线相交的线段,答案为 \(0\)
Sample Input
6
1 8 5 10 8
1 6 7 2 6
0 2
0 9
1 4 7 6 7
0 5
Sample Output
2
0
3
HINT
对于 \(30\%\) 的数据,\(n \leq 1000\)
对于 \(100\%\) 的数据,\(1 \leq n \leq 10^5, 1 \leq k, x0, x1 \leq 39989, 1 \leq y0 , y1 \leq 10^9\)
题解
李超线段树模板题。
推荐一篇好的 \(blog\) : https://blog.csdn.net/flere825/article/details/76283734
很巧妙的思想。
关键点就是引入区间“最优势线段” & 动态维护它,保证对每一个位置,答案一定在包含这个位置的区间的“最优势线段”中。
代码
注意坑点!!!!!
\(y\) 的模数为 \(10^9\)
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#define eps 1e-9
#define P 39989
using namespace std;
int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
}
const int N = 100005;
typedef double db;
int tot;
db K[N],B[N];
struct node{
node *ch[2];
int id;
}pool[P*2],*root;
int cnt;
void build(node *p,int l,int r){
p->id=0;
if(l==r) return;
int mid=(l+r)>>1;
build(p->ch[0]=&pool[++cnt],l,mid);
build(p->ch[1]=&pool[++cnt],mid+1,r);
}
inline db cal(int x,int c) { return K[x]*c+B[x]; }
bool better(int x,int y,int c){
if(x==0) return false;
if(y==0) return true;
db cx=cal(x,c),cy=cal(y,c);
if(fabs(cx-cy)<eps) return x<y;
return cx>cy;
}
void insert(node *p,int l,int r,int L,int R,int c){
if(l==L && r==R){
int mid=(l+r)>>1;
if(better(c,p->id,mid)) swap(p->id,c);
int tl=better(p->id,c,l),tr=better(p->id,c,r);
if(!c || l==r || (tl && tr)) return;
if(tl) insert(p->ch[1],mid+1,r,mid+1,r,c);
else insert(p->ch[0],l,mid,l,mid,c);
return;
}
int mid=(l+r)>>1;
if(R<=mid) insert(p->ch[0],l,mid,L,R,c);
else if(L>mid) insert(p->ch[1],mid+1,r,L,R,c);
else {
insert(p->ch[0],l,mid,L,mid,c);
insert(p->ch[1],mid+1,r,mid+1,R,c);
}
}
int ans;
void query(node *p,int l,int r,int c){
ans = better(p->id,ans,c) ? p->id : ans ;
if(l==r) return;
int mid=(l+r)>>1;
if(c<=mid) query(p->ch[0],l,mid,c);
else query(p->ch[1],mid+1,r,c);
}
int main()
{
int n,opt,lastans=0,k,x0,y0,x1,y1;
n=read();
root=&pool[++cnt];
build(root,1,P);
while(n--){
opt=read();
if(opt==0){
k=(read()+lastans-1)%P+1;
ans=0;
query(root,1,P,k);
lastans=ans;
printf("%d\n",lastans);
}
else{
x0=(read()+lastans-1)%P+1; y0=(read()+lastans-1)%1000000000+1;
x1=(read()+lastans-1)%P+1; y1=(read()+lastans-1)%1000000000+1;
if(x0>x1) swap(x0,x1),swap(y0,y1);
tot++;
K[tot]=1.0*(y1-y0)/(x1-x0);
B[tot]=y0-K[tot]*x0;
insert(root,1,P,x0,x1,tot);
}
}
return 0;
}
[洛谷P4097] [HEOI2013] Segment的更多相关文章
- 洛谷 P4097 [HEOI2013]Segment 解题报告
P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...
- 2018.07.23 洛谷P4097 [HEOI2013]Segment(李超线段树)
传送门 给出一个二维平面,给出若干根线段,求出x" role="presentation" style="position: relative;"&g ...
- 洛谷P4097 [HEOI2013]Segment(李超线段树)
题面 传送门 题解 调得咱自闭了-- 不难发现这就是个李超线段树,不过因为这里加入的是线段而不是直线,所以得把线段在线段树上对应区间内拆开之后再执行李超线段树的操作,那么复杂度就是\(O(n\log^ ...
- 【洛谷P4097】Segment 李超线段树
题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...
- 洛谷 P4100 [HEOI2013]钙铁锌硒维生素 解题报告
P4100 [HEOI2013]钙铁锌硒维生素 题目描述 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加 宇宙比赛的饮食. 众所周知,前往宇宙的某个星球,通常要花费好长好长的时间, ...
- P4097 [HEOI2013]Segment(李超树)
链接 https://www.luogu.org/problemnew/show/P4097 https://www.lydsy.com/JudgeOnline/problem.php?id=3165 ...
- 【题解】Luogu P4097 [HEOI2013]Segment
原题传送门 这珂以说是李超线段树的模板题 按着题意写就行了,时间复杂度为\(O(n\log^2n)\) #include <bits/stdc++.h> #define N 40005 # ...
- Luogu P4097 [HEOI2013]Segment 李超线段树
题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...
- 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)
思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...
随机推荐
- linux一个进程如何睡眠
如果我们深入 <linux/wait.h>, 你见到在 wait_queue_head_t 类型后面的数据结构是非 常简单的; 它包含一个自旋锁和一个链表. 这个链表是一个等待队列入口, ...
- TOJ 6121: 学长的情书 ( 二分)
传送门: 点我 6121: 学长的情书 时间限制(普通/Java):2000MS/6000MS 内存限制:65536KByte总提交: 79 测试通过:2 描述 抹布收 ...
- CentOS服务器安装mysql
1.配置YUM源 下载mysql源安装包 [root@localhost~]#wget http://dev.mysql.com/get/mysql57-community-release-el7-8 ...
- LeekCode解题记录
昨天晚上有个LeekCode的比赛,两个半小时解五题,轻松解决前两题后,卡在第三题,还剩半小时时放弃,开始解第五题,解完但未验证通过,第四题只看了下题目. 排名第一的大佬只用了36分钟全部写完. 差距 ...
- 第二阶段:2.商业需求文档MRD:4.MRD-核心目标-产品构成
竞争对手分析很重要.之后单独讲解.产品经理时刻要关注竞争产品的状态. 1.不同于PRD.这里只是概况.2.产品前景的核心目标就是:KPI(用户使用量:安装量,卸载量,日活数)跟ROI(开发人力,时间, ...
- jquery $.post()返回数据
javawe项目很多情况下需要通过$.post()进行前端和后端传递数据 格式是: $.post(url,data,function(result,statue){ alert(result); }, ...
- linux下tomcat相关的命令
1.查看Tomcat是否以关闭 ps -ef|grep tomcat 2.直接干掉Tomcat可以使用kill命令,直接杀死Tomcat进程(这个命令用在当你关闭tomcat报错的时候直接杀死进程) ...
- .NetCore集成Dapr踩坑经历
该篇内容由个人博客点击跳转同步更新!转载请注明出处 前言 之前自己有个core2.2的项目一直是用的Surging作为微服务框架的,后来了解到了Dapr,发现比较轻量级,开发部署等也非常方便,故将自己 ...
- spring boot(二)热部署
1.打开idea的设置界面 File | Settings > Build, Execution, Deployment > Compiler 2.勾选Buildproject antom ...
- DRF框架中分页功能接口
目录 DRF框架中分页功能接口 DRF框架中分页功能接口 一.在框架中提供来三个类来实现分页功能,PageNumberPagination.LimitOffsetPagination.CursorPa ...