簇数的确定:

要用到k-means里面的轮廓系数

基于python的数学建模---轮廓系数的确定 - 坤丶 - 博客园 (cnblogs.com)

模糊c的代码

import copy
import math
import random
import time global MAX # 用于初始化隶属度矩阵U
MAX = 10000.0 global Epsilon # 结束条件
Epsilon = 0.0000001 def import_data_format_iris(file):
"""
file这里是输入文件的路径,如iris.txt.
格式化数据,前四列为data,最后一列为类标号(有0,1,2三类)
如果是你自己的data,就不需要执行此段函数了。
"""
data = []
cluster_location = []
with open(str(file), 'r') as f:
for line in f:
current = line.strip().split(",") # 对每一行以逗号为分割,返回一个list
current_dummy = []
for j in range(0, len(current) - 1):
current_dummy.append(float(current[j])) # current_dummy存放data
j += 1
# 下面注这段话提供了一个范例:若类标号不是0,1,2之类数字时该怎么给数据集
# 归类
if current[j] == "Iris-setosa\n":
cluster_location.append(0)
elif current[j] == "Iris-versicolor\n":
cluster_location.append(1)
else:
cluster_location.append(2)
data.append(current_dummy)
print("加载数据完毕")
return data # return data , cluster_location def randomize_data(data):
"""
该功能将数据随机化,并保持随机化顺序的记录
"""
order = list(range(0, len(data)))
random.shuffle(order)
new_data = [[] for i in range(0, len(data))]
for index in range(0, len(order)):
new_data[index] = data[order[index]]
return new_data, order def de_randomise_data(data, order):
"""
此函数将返回数据的原始顺序,将randomise_data()返回的order列表作为参数
"""
new_data = [[] for i in range(0, len(data))]
for index in range(len(order)):
new_data[order[index]] = data[index]
return new_data def print_matrix(list):
"""
以可重复的方式打印矩阵
"""
for i in range(0, len(list)):
print(list[i]) def initialize_U(data, cluster_number):
"""
这个函数是隶属度矩阵U的每行加起来都为1. 此处需要一个全局变量MAX.
"""
global MAX
U = []
for i in range(0, len(data)):
current = []
rand_sum = 0.0
for j in range(0, cluster_number):
dummy = random.randint(1, int(MAX))
current.append(dummy)
rand_sum += dummy
for j in range(0, cluster_number):
current[j] = current[j] / rand_sum
U.append(current)
return U def distance(point, center):
"""
该函数计算2点之间的距离(作为列表)。我们指欧几里德距离。闵可夫斯基距离
"""
if len(point) != len(center):
return -1
dummy = 0.0
for i in range(0, len(point)):
dummy += abs(point[i] - center[i]) ** 2
return math.sqrt(dummy) def end_conditon(U, U_old):
"""
结束条件。当U矩阵随着连续迭代停止变化时,触发结束
"""
global Epsilon
for i in range(0, len(U)):
for j in range(0, len(U[0])):
if abs(U[i][j] - U_old[i][j]) < Epsilon:
return False
return True def normalise_U(U):
"""
在聚类结束时使U模糊化。每个样本的隶属度最大的为1,其余为0
"""
for i in range(0, len(U)):
maximum = max(U[i])
for j in range(0, len(U[0])):
if U[i][j] != maximum:
U[i][j] = 0
else:
U[i][j] = 1
return U # m的最佳取值范围为[1.5,2.5]
def fuzzy(data, cluster_number, m):
"""
这是主函数,它将计算所需的聚类中心,并返回最终的归一化隶属矩阵U.
参数是:簇数(cluster_number)和隶属度的因子(m)
"""
# 初始化隶属度矩阵U
U = initialize_U(data, cluster_number)
# print_matrix(U)
# 循环更新U
while (True):
# 创建它的副本,以检查结束条件
U_old = copy.deepcopy(U)
# 计算聚类中心
C = []
for j in range(0, cluster_number):
current_cluster_center = []
for i in range(0, len(data[0])):
dummy_sum_num = 0.0
dummy_sum_dum = 0.0
for k in range(0, len(data)):
# 分子
dummy_sum_num += (U[k][j] ** m) * data[k][i]
# 分母
dummy_sum_dum += (U[k][j] ** m)
# 第i列的聚类中心
current_cluster_center.append(dummy_sum_num / dummy_sum_dum)
# 第j簇的所有聚类中心
C.append(current_cluster_center) # 创建一个距离向量, 用于计算U矩阵。
distance_matrix = []
for i in range(0, len(data)):
current = []
for j in range(0, cluster_number):
current.append(distance(data[i], C[j]))
distance_matrix.append(current) # 更新U
for j in range(0, cluster_number):
for i in range(0, len(data)):
dummy = 0.0
for k in range(0, cluster_number):
# 分母
dummy += (distance_matrix[i][j] / distance_matrix[i][k]) ** (2 / (m - 1))
U[i][j] = 1 / dummy if end_conditon(U, U_old):
print("结束聚类")
break
print("标准化 U")
U = normalise_U(U)
return U def checker_iris(final_location):
"""
和真实的聚类结果进行校验比对
"""
right = 0.0
for k in range(0, 3):
checker = [0, 0, 0]
for i in range(0, 50):
for j in range(0, len(final_location[0])):
if final_location[i + (50 * k)][j] == 1: # i+(50*k)表示 j表示第j类
checker[j] += 1 # checker分别统计每一类分类正确的个数
right += max(checker) # 累加分类正确的个数
print('分类正确的个数是:', right)
answer = right / 150 * 100
return "准确率:" + str(answer) + "%" if __name__ == '__main__':
# 加载数据
data = import_data_format_iris("tae.csv")
# print_matrix(data) # 随机化数据
data, order = randomize_data(data)
# print_matrix(data) start = time.time()
# 现在我们有一个名为data的列表,它只是数字
# 我们还有另一个名为cluster_location的列表,它给出了正确的聚类结果位置
# 调用模糊C均值函数
final_location = fuzzy(data, 3, 2) # 还原数据
final_location = de_randomise_data(final_location, order)
# print_matrix(final_location) # 准确度分析
print(checker_iris(final_location))
print("用时:{0}".format(time.time() - start))
加载数据完毕
结束聚类
标准化 U
分类正确的个数是: 71.0
准确率:47.333333333333336%
用时:0.003954410552978516

  当然这个数据集是随意找的,准确率太低了

基于python的数学建模---Fuzzy C-Means(模糊C均值聚类)的更多相关文章

  1. 基于核方法的模糊C均值聚类

    摘要: 本文主要针对于FCM算法在很大程度上局限于处理球星星团数据的不足,引入了核方法对算法进行优化.  与许多聚类算法一样,FCM选择欧氏距离作为样本点与相应聚类中心之间的非相似性指标,致使算法趋向 ...

  2. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  3. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  4. 机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现

    前言:这几天一直都在研究模糊聚类.感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类. 一:模糊数学 我们大家都知道计算机其实只认识两个数字0,1.我们平时写程序其实也是这样 ...

  5. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  6. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  7. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  8. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  9. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  10. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

随机推荐

  1. CPU流水线与指令乱序执行

    青蛙见了蜈蚣,好奇地问:"蜈蚣大哥,我很好奇,你那么多条腿,走路的时候先迈哪一条啊?" 蜈蚣听后说:"青蛙老弟,我一直就这么走路,从没想过先迈哪一条腿,等我想一想再回答你 ...

  2. KingbaseES 数据库软件卸载

    关键字: KingbaseES.卸载   一.安装后检查 在安装完成后,可以通过以下几种方式进行安装正确性验证: 1. 查看安装日志,确认没有错误记录; 2. 查看开始菜单: 查看应用程序菜单中是否安 ...

  3. KingbaseES R6 集群测试job管理测试

    案例说明: 本案例参考<Job And Schedule (V8R6C4)>(https://www.cnblogs.com/kingbase/p/15194227.html)单实例环境下 ...

  4. 【一月一本技术书】-【MySQL是怎样运行的】- 8月

    mysql 基础 mysql分为 客戶端/服务端 客户端向服务端发送一段文本(mysql语句),服务器处理后向客户端进程返回一段文本. 查询请求执行过程 客户端->处理连接->查询缓存-& ...

  5. 第二章:视图层 - 6:QueryDict对象

    类的原型:class QueryDict[source] 在HttpRequest对象中,GET和POST属性都是一个django.http.QueryDict的实例.也就是说你可以按本文下面提供的方 ...

  6. MySQL用户中的%到底包不包括localhost?

    1 前言 操作MySQL的时候发现,有时只建了%的账号,可以通过localhost连接,有时候却不可以,网上搜索也找不到满意的答案,干脆手动测试一波 2 两种连接方法 这里说的两种连接方法指是执行my ...

  7. 在Kuboard上安装 Ingress Controller

    快速安装 # 只在 master 节点执行 kubectl apply -f https://kuboard.cn/install-script/v1.18.x/nginx-ingress.yaml ...

  8. 某云负载均衡获取客户端真实IP的问题

    某云负载均衡真实IP的问题,我们这边已经遇到过两次了.而且每次和售后沟通的时候都大费周折,主要是要给售后说明白目前文档的获取真实IP是有问题的,他们觉得文档上说明的肯定没问题,售后要是不明白,他们不会 ...

  9. 制造企业有可能自行开发ERP系统吗?

    当然可以啊! 生产企业对于ERP的需求是一直存在的,但市场上多为标准化的产品,与企业的个性化需求矛盾着. 有很多制造企业自行开发ERP系统啊!只是各个企业成效不同而已,毕竟不同企业的IT开发能力不同而 ...

  10. 一篇文章带你掌握主流服务层框架——SpringMVC

    一篇文章带你掌握主流服务层框架--SpringMVC 在之前的文章中我们已经学习了Spring的基本内容,SpringMVC隶属于Spring的一部分内容 但由于SpringMVC完全针对于服务层使用 ...