1. 介绍

最近几周,人们对比较 Hudi、Delta 和 Iceberg 的表现越来越感兴趣。 我们认为社区应该得到更透明和可重复的分析。 我们想就如何执行和呈现这些基准、它们带来什么价值以及我们应该如何解释它们添加我们的观点。

2. 现有方法存在哪些问题?

最近 Databeans 发布了一篇博客,其中使用 TPC-DS 基准对 Hudi/Delta/Iceberg 的性能进行了正面比较。虽然很高兴看到社区挺身而出并采取行动提高对行业当前技术水平的认识,但我们发现了一些与实验进行方式和结果报告有关的问题,我们希望分享和今天更广泛地讨论。

作为一个社区,我们应该努力在发布基准时增加更严格的标准。我们相信这些是任何基准测试工作的关键原则:

  • 可重现性:如果结果不可重现,读者别无选择,只能盲目相信表面上的结果。相反,应该记录基准,以便任何人都可以使用相同的工具获得相同的结果。
  • 开放:为了获得相同的结果,确保用于基准测试的工具可用于检查正确性至关重要。
  • 公平:随着正在测试的技术的复杂性不断增长,基准设置需要确保所有竞争者都使用记录在案的配置来测试工作负载。

关于这些基本问题,不幸的是,我们认为 Databeans 博客没有完整地分享结果是什么以及如何实现的。例如:

  • 基准 EMR 运行时配置未完全披露:尚不清楚,例如Spark 的动态分配功能是否被禁用,因为它有可能对测量产生不可预测的影响。

  • 用于基准测试的代码是 Delta 基准测试框架的扩展,不幸的是它也没有公开共享,因此无法查看或重复相同的实验。

  • 无法访问代码也会影响分析应用于 Hudi/Delta/Iceberg 的配置的能力,这使得评估公平性具有挑战性

3. 我们建议如何运行基准测试

我们会定期运行性能基准测试,以确保一起提供Hudi 丰富的功能集与基于 Hudi 的 EB 数据湖的最佳性能。我们的团队在对复杂分布式系统(如 Apache Kafka 或 Pulsar)进行基准测试方面拥有丰富的经验,符合上述原则。

为确保已发布的基准符合以下原则:

  1. 我们关闭了 Spark 的动态分配功能,以确保我们在稳定的环境中运行基准测试,并消除 Spark 集群决定扩大或缩小规模时结果中的任何抖动。 我们使用 EMR 6.6.0 版本,Spark 3.2.0 和 Hive 3.1.2(用于 HMS),具有以下配置(在创建时在 Spark EMR UI 中指定)有关如何设置 HMS 的更多详细信息,请按照说明进行操作 在README文件中
[{
"Classification": "spark-defaults",
"Properties": {
"spark.dynamicAllocation.enabled": "false"
}
}, {
"Classification": "spark",
"Properties": {
"maximizeResourceAllocation": "true"
}
}, {
"Classification": "hive-site",
"Properties": {
"javax.jdo.option.ConnectionURL": < hive_metastore_url > ,
"javax.jdo.option.ConnectionDriverName": "org.mariadb.jdbc.Driver",
"javax.jdo.option.ConnectionUserName": < username > ,
"javax.jdo.option.ConnectionPassword": < password >
}
}]
  1. 我们已经公开分享了我们对 Delta 基准测试框架的修改,以支持通过 Spark Datasource 或 Spark SQL 创建 Hudi 表。 这可以在基准定义中动态切换。
  2. TPC-DS 加载不涉及更新。 Hudi 加载的 databeans 配置使用了不适当的写入操作 upsert,而明确记录了 Hudi bulk-insert 是此用例的推荐写入操作。 此外,我们调整了 Hudi parquet 文件大小设置以匹配 Delta Lake 默认值。
CREATE TABLE ...
USING HUDI
OPTIONS (
type = 'cow',
primaryKey = '...',
precombineField = '',
'hoodie.datasource.write.hive_style_partitioning' = 'true',
-- Disable Hudi’s record-level metadata for updates, incremental processing, etc
'hoodie.populate.meta.fields' = 'false',
-- Use “bulk-insert” write-operation instead of default “upsert”
'hoodie.sql.insert.mode' = 'non-strict',
'hoodie.sql.bulk.insert.enable' = 'true',
-- Perform bulk-insert w/o sorting or automatic file-sizing
'hoodie.bulkinsert.sort.mode' = 'NONE',
-- Increasing the file-size to match Delta’s setting
'hoodie.parquet.max.file.size' = '141557760',
'hoodie.parquet.block.size' = '141557760',
'hoodie.parquet.compression.codec' = 'snappy',
– All TPC-DS tables are actually relatively small and don’t require the use of MT table (S3 file-listing is sufficient)
'hoodie.metadata.enable' = 'false',
'hoodie.parquet.writelegacyformat.enabled' = 'false'
)
LOCATION '...'

Hudi 的起源植根于增量数据处理,以将所有老式批处理作业变成增量。 因此,Hudi 的默认配置面向增量更新插入和为增量 ETL 管道生成更改流,而将初始负载视为罕见的一次性操作。 因此需要更加注意加载时间才能与 Delta 相媲美。

4. 运行基准测试

4.1 加载

可以清楚地看到,Delta 和 Hudi 在 0.11.1 版本中的误差在 6% 以内,在当前 Hudi 的 master* 中误差在 5% 以内(我们还对 Hudi 的 master 分支进行了基准测试,因为我们最近在 Parquet 编码配置中发现了一个错误 已及时解决)。

为 Hudi 在原始 Parquet 表之上提供的丰富功能集提供支持,例如:

还有更多,Hudi 在内部存储了一组额外的元数据以及每条称为元字段的记录。 由于 tpc-ds 主要关注快照查询,在这个特定的实验中,这些字段已被禁用(并且未计算),Hudi 仍然将它们保留为空值,以便在未来打开它们而无需模式演进。 添加五个这样的字段作为空值,虽然开销很低,但仍然不可忽略。

4.2 查询

正如我们所见,Hudi 0.11.1 和 Delta 1.2.0 的性能几乎没有区别,而且 Hudi 目前的 master 速度要快一些(~5%)。

您可以在 Google Drive 上的此目录中找到原始日志:

要重现上述结果,请使用我们在 Delta 基准存储库 中的分支并按照自述文件中的步骤进行操作。

5. 结论

总而言之,我们想强调开放性和可重复性在性能基准测试这样敏感和复杂的领域的重要性。 正如我们反复看到的那样,获得可靠和值得信赖的基准测试结果是乏味且具有挑战性的,需要奉献、勤奋和严谨的支持。

展望未来,我们计划发布更多内部基准测试,突出显示 Hudi 丰富的功能集如何在其他常见行业工作负载中达到无与伦比的性能水平。 敬请关注!

Apache Hudi vs Delta Lake:透明TPC-DS Lakehouse性能基准的更多相关文章

  1. 对话Apache Hudi VP, 洞悉数据湖的过去现在和未来

    Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简 ...

  2. 官宣!Amazon EMR正式支持Apache Hudi

    ​Apache Hudi是一个开源的数据管理框架,其通过提供记录级别的insert, update, upsert和delete能力来简化增量数据处理和数据管道开发.Upsert指的是将记录插入到现有 ...

  3. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  4. Robinhood基于Apache Hudi的下一代数据湖实践

    1. 摘要 Robinhood 的使命是使所有人的金融民主化. Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础. 我们有各种数据源--OLTP 数据库.事件流和各种第 ...

  5. 基于 Apache Hudi 和DBT 构建开放的Lakehouse

    本博客的重点展示如何利用增量数据处理和执行字段级更新来构建一个开放式 Lakehouse. 我们很高兴地宣布,用户现在可以使用 Apache Hudi + dbt 来构建开放Lakehouse. 在深 ...

  6. 写入Apache Hudi数据集

    这一节我们将介绍使用DeltaStreamer工具从外部源甚至其他Hudi数据集摄取新更改的方法, 以及通过使用Hudi数据源的upserts加快大型Spark作业的方法. 对于此类数据集,我们可以使 ...

  7. Delta Lake基础操作和原理

    目录 Delta Lake 特性 maven依赖 使用aws s3文件系统快速启动 基础表操作 merge操作 delta lake更改现有数据的具体过程 delta表schema 事务日志 delt ...

  8. Apache Hudi 设计与架构最强解读

    感谢 Apache Hudi contributor:王祥虎 翻译&供稿. 欢迎关注微信公众号:ApacheHudi 本文将介绍Apache Hudi的基本概念.设计以及总体基础架构. 1.简 ...

  9. 实战 | 将Apache Hudi数据集写入阿里云OSS

    1. 引入 云上对象存储的廉价让不少公司将其作为主要的存储方案,而Hudi作为数据湖解决方案,支持对象存储也是必不可少.之前AWS EMR已经内置集成Hudi,也意味着可以在S3上无缝使用Hudi.当 ...

随机推荐

  1. 《Effective C++》阅读总结(二):类的构造、析构和赋值

    今天是周六早上,但很不幸待会儿还是要去公司,本月kpi还剩一些工作要做,这个月计划的Effective C++学习,也基本完成了,最后一章节模板相关那部分还看不太懂,就大概过了一遍.现在是收尾总结阶段 ...

  2. Date类的常见用法——JavaSE基础

    Date类的常见用法 Date类属于java.util包 因此需要导入Date类 Date() 分配一个Date对象,并初始化此对象为系统当前的日期和时间,可以精确到毫秒). Date(long da ...

  3. MySQL数据库5

    内容概要 pyhton操作MySQL SQL注入问题 修改表SQL语句补充 视图.触发器.储存过程 事务 流程控制 函数 索引与慢查询优化 内容详情 pyhton操作MySQL python中支持操作 ...

  4. Java开发学习(四)----bean的三种实例化方式

    一.环境准备 准备开发环境 创建一个Maven项目 pom.xml添加依赖 resources下添加spring的配置文件applicationContext.xml 最终项目的结构如下:    二. ...

  5. Python调用腾讯云API,实现人脸年龄变化

    网上看到了一个教程,调用腾讯云的人脸识别api和修改年龄api来实现模拟人物不同年龄的面貌 但是大多数教程的代码都是想同的,估计是抄袭哪个人的关键是执行不了 刚好周杰伦马上要发新专辑了,小改一下,拿杰 ...

  6. 基于SqlSugar的开发框架循序渐进介绍(9)-- 结合Winform控件实现字段的权限控制

    字段的权限控制,一般就是控制对应角色人员对某个业务对象的一些敏感字段的可访问性:包括可见.可编辑性等处理.本篇随笔结合基于SqlSugar的开发框架进行的字段控制管理介绍. 在设计字段权限的时候,我们 ...

  7. Redis系列2:数据持久化提高可用性

    1 介绍 从上一篇的 <深刻理解高性能Redis的本质> 中可以知道, 我们经常在数据库层上加一层缓存(如Redis),来保证数据的访问效率. 这样性能确实也有了大幅度的提升,但是本身Re ...

  8. RPA-UiPath视频教程1

    UiPath下载.安装.激活.第一个案例Helloworld!.参数类型.变量的介绍和使用 https://www.bilibili.com/video/av92816532 RPA直播公开课2020 ...

  9. 基于Vue2.x的前端架构,我们是这么做的

    通过Vue CLI可以方便的创建一个Vue项目,但是对于实际项目来说还是不够的,所以一般都会根据业务的情况来在其基础上添加一些共性能力,减少创建新项目时的一些重复操作,本着学习和分享的目的,本文会介绍 ...

  10. 【python量化】将Transformer模型用于股票价格预测

    本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transfor ...